taishi-i commited on
Commit
2187b7a
1 Parent(s): b514ced

add tutorial and model description to README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -1
README.md CHANGED
@@ -81,4 +81,31 @@ tensor([[[-0.2912, -0.6818, -0.4097, ..., 0.0262, -0.3845, 0.5816],
81
  [-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
82
  [-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
83
  grad_fn=<NativeLayerNormBackward0>)
84
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  [-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
82
  [-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
83
  grad_fn=<NativeLayerNormBackward0>)
84
+ ```
85
+
86
+ ## Model description
87
+
88
+ ### Architecture
89
+
90
+ The model architecture is the same as [the BERT bert-base-uncased architecture](https://huggingface.co/bert-base-uncased) (12 layers, 768 dimensions of hidden states, and 12 attention heads).
91
+
92
+ ### Training Data
93
+
94
+ The models is trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 8, 2022 with [make_corpus_wiki.py](https://github.com/cl-tohoku/bert-japanese/blob/main/make_corpus_wiki.py) and [create_pretraining_data.py](https://github.com/cl-tohoku/bert-japanese/blob/main/create_pretraining_data.py).
95
+
96
+ ### Training
97
+
98
+ The model is trained with the default parameters of [transformers.BertConfig](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig).
99
+ Due to GPU memory limitations, the batch size is set to small; 16 instances per batch, and 2M training steps.
100
+
101
+ ## Tutorial
102
+
103
+ You can find here a list of the notebooks on Japanese NLP using pre-trained models and transformers.
104
+
105
+ | Notebook | Description | |
106
+ |:----------|:-------------|------:|
107
+ | [Fill-mask](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to fill in Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb)|
108
+ | [Feature-extraction](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to extract features from Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb)|
109
+ | [Embedding visualization](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization-japanese_bert_models.ipynb) | Show how to visualize embeddings from Japanese pre-trained models. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization_japanese_bert_models.ipynb)|
110
+ | [How to fine-tune a model on text classification](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb) | Show how to fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb)|
111
+ | [How to fine-tune a model on text classification with csv files](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb) | Show how to preprocess the data and fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb)|