add tutorial and model description to README.md
Browse files
README.md
CHANGED
@@ -81,4 +81,31 @@ tensor([[[-0.2912, -0.6818, -0.4097, ..., 0.0262, -0.3845, 0.5816],
|
|
81 |
[-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
|
82 |
[-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
|
83 |
grad_fn=<NativeLayerNormBackward0>)
|
84 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
[-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
|
82 |
[-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
|
83 |
grad_fn=<NativeLayerNormBackward0>)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Model description
|
87 |
+
|
88 |
+
### Architecture
|
89 |
+
|
90 |
+
The model architecture is the same as [the BERT bert-base-uncased architecture](https://huggingface.co/bert-base-uncased) (12 layers, 768 dimensions of hidden states, and 12 attention heads).
|
91 |
+
|
92 |
+
### Training Data
|
93 |
+
|
94 |
+
The models is trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 8, 2022 with [make_corpus_wiki.py](https://github.com/cl-tohoku/bert-japanese/blob/main/make_corpus_wiki.py) and [create_pretraining_data.py](https://github.com/cl-tohoku/bert-japanese/blob/main/create_pretraining_data.py).
|
95 |
+
|
96 |
+
### Training
|
97 |
+
|
98 |
+
The model is trained with the default parameters of [transformers.BertConfig](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig).
|
99 |
+
Due to GPU memory limitations, the batch size is set to small; 16 instances per batch, and 2M training steps.
|
100 |
+
|
101 |
+
## Tutorial
|
102 |
+
|
103 |
+
You can find here a list of the notebooks on Japanese NLP using pre-trained models and transformers.
|
104 |
+
|
105 |
+
| Notebook | Description | |
|
106 |
+
|:----------|:-------------|------:|
|
107 |
+
| [Fill-mask](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to fill in Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb)|
|
108 |
+
| [Feature-extraction](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to extract features from Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb)|
|
109 |
+
| [Embedding visualization](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization-japanese_bert_models.ipynb) | Show how to visualize embeddings from Japanese pre-trained models. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization_japanese_bert_models.ipynb)|
|
110 |
+
| [How to fine-tune a model on text classification](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb) | Show how to fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb)|
|
111 |
+
| [How to fine-tune a model on text classification with csv files](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb) | Show how to preprocess the data and fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb)|
|