--- license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-base.en-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.88 --- # whisper-base.en-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co./openai/whisper-base.en) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6266 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7396 | 1.0 | 75 | 1.6061 | 0.56 | | 0.8839 | 2.0 | 150 | 0.8286 | 0.77 | | 0.7631 | 3.0 | 225 | 0.6353 | 0.81 | | 0.4049 | 4.0 | 300 | 0.5840 | 0.82 | | 0.3031 | 5.0 | 375 | 0.4069 | 0.88 | | 0.3031 | 6.0 | 450 | 0.7152 | 0.81 | | 0.2879 | 7.0 | 525 | 0.7061 | 0.85 | | 0.0301 | 8.0 | 600 | 0.5691 | 0.89 | | 0.0311 | 9.0 | 675 | 0.6153 | 0.88 | | 0.0025 | 10.0 | 750 | 0.5463 | 0.88 | | 0.0036 | 11.0 | 825 | 0.6017 | 0.89 | | 0.0016 | 12.0 | 900 | 0.6859 | 0.85 | | 0.0014 | 13.0 | 975 | 0.5887 | 0.89 | | 0.0012 | 14.0 | 1050 | 0.6525 | 0.9 | | 0.0011 | 15.0 | 1125 | 0.6289 | 0.89 | | 0.0011 | 16.0 | 1200 | 0.6277 | 0.88 | | 0.001 | 17.0 | 1275 | 0.6274 | 0.88 | | 0.0611 | 18.0 | 1350 | 0.6266 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3