Text Generation
Transformers
PyTorch
longllama
code
custom_code
Eval Results
File size: 6,853 Bytes
6711cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LongLLaMA model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

LONGLLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "syzymon/long_llama_3b": "https://huggingface.co./syzymon/long_llama_3b/resolve/main/config.json",
}


class LongLlamaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LongLlamaModel`]. It is used to instantiate an LongLLaMA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LongLLaMA-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LongLLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LongLlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        mem_layers (`List[int]`, defaults to `[]`):
            Layers with memory
        mem_positionals (`bool`, *optional*, defaults to `True`):
            Whether to use positional embeddings in memory layers
        mem_dtype (`str`, *optional*, defaults to `"bfloat16"`):
            Type for keys and values stored in memory
        mem_attention_grouping (`Tuple[int, int]`, *optional*, defaults to `None`):
            One can trade speed for memory by performing attention
            in memory layers sequentially.
            When equal to `(4, 2048)` the memory layers will process at most 4 heads and 2048 queries from each head at once.
            That is at most 4*2048 queries at once.
        torch_attention (`bool`, *optional*, defaults to `False`):
            Whether to use torch scaled_dot_product_attention
        gradient_checkpoint_every_ith (`int`, *optional*, defaults to `1`):
            When gradient checkpointing is enabled checkpoint every ith layer

        Example:

    ```python
    >>> from transformers import LongLlamaModel, LongLlamaConfig

    >>> # Initializing a LongLLaMA longllama-7b style configuration
    >>> configuration = LongLlamaConfig()

    >>> # Initializing a model from the longllama-7b style configuration
    >>> model = LongLlamaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "longllama"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        last_context_length=1024,
        mem_layers=[],
        mem_positionals=True,
        mem_dtype="bfloat16",
        mem_attention_grouping=None,
        torch_attention=False,
        gradient_checkpoint_every_ith=1,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.last_context_length = last_context_length
        self.mem_layers = mem_layers
        self.mem_positionals = mem_positionals
        self.mem_dtype = mem_dtype
        self.mem_attention_grouping = mem_attention_grouping
        self.torch_attention = torch_attention
        self.gradient_checkpoint_every_ith = gradient_checkpoint_every_ith
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )