--- library_name: transformers language: - ne metrics: - cer pipeline_tag: image-to-text --- ## Devanagari OCR with TrOCR This model is a Devanagari Optical Character Recognition (OCR) model based on VisionEncoderDecoder architecture, fine-tuned on Nepali/Devanagari script. The model uses the `TrOCRProcessor` from Hugging Face to process and generate text from images. ### Model Details - **Model:** `syubraj/TrOCR_Nepali` - **Processor:** TrOCRProcessor combining a Vision Transformer (ViT) feature extractor and a tokenizer. ### How to Use You can use this model in Python with the following steps: ```python from transformers import VisionEncoderDecoderModel, TrOCRProcessor, AutoTokenizer from PIL import Image import torch # Load the model and processor tokenizer = AutoTokenizer.from_pretrained("syubraj/TrOCR_Nepali") model = VisionEncoderDecoderModel.from_pretrained("syubraj/TrOCR_Nepali") processor = TrOCRProcessor.from_pretrained("syubraj/TrOCR_Nepali") # Load image image = Image.open("path_to_image").convert("RGB") # Preprocess image pixel_values = processor(image, return_tensors="pt").pixel_values # Generate text generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ```