File size: 11,098 Bytes
631641c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
import cv2
import subprocess
import torch
import numpy as np
from tqdm import tqdm
from moviepy.editor import VideoFileClip, AudioFileClip
from models import Wav2Lip
import audio
from datetime import datetime
import shutil
import sys
# library_path = "../"
# sys.path.insert(1, library_path)
import util
class Processor:
def __init__(
self,
checkpoint_path=os.path.join(
"wav2lip_inference", "checkpoints", "wav2lip_gan.pth"
# "checkpoints", "wav2lip.pth"
# "checkpoints", "visual_quality_disc.pth"
),
nosmooth=False,
static=False,
):
self.checkpoint_path = checkpoint_path
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.static = static
self.nosmooth = nosmooth
def get_smoothened_boxes(self, boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T :]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(self, images):
print("Detecting Faces")
# Load the pre-trained Haar Cascade Classifier for face detection
face_cascade = cv2.CascadeClassifier(
os.path.join(
"wav2lip_inference",
"checkpoints",
"haarcascade_frontalface_default.xml",
)
) # cv2.data.haarcascades
pads = [0, 10, 0, 0]
results = []
pady1, pady2, padx1, padx2 = pads
for image in images:
# Convert the image to grayscale for face detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the grayscale image
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
)
if len(faces) > 0:
# Get the first detected face (you can modify this to handle multiple faces)
x, y, w, h = faces[0]
# Calculate the bounding box coordinates
x1 = max(0, x - padx1)
x2 = min(image.shape[1], x + w + padx2)
y1 = max(0, y - pady1)
y2 = min(image.shape[0], y + h + pady2)
results.append([x1, y1, x2, y2])
else:
cv2.imwrite(
os.path.join("temp","faulty_frame.jpg"), image
) # Save the frame where the face was not detected.
raise ValueError("Face not detected! Ensure the image contains a face.")
boxes = np.array(results)
if not self.nosmooth:
boxes = self.get_smoothened_boxes(boxes, 5)
results = [
[image[y1:y2, x1:x2], (y1, y2, x1, x2)]
for image, (x1, y1, x2, y2) in zip(images, boxes)
]
return results
def datagen(self, frames, mels):
img_size = 96
box = [-1, -1, -1, -1]
wav2lip_batch_size = 128
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if box[0] == -1:
if not self.static:
face_det_results = self.face_detect(
frames
) # BGR2RGB for CNN face detection
else:
face_det_results = self.face_detect([frames[0]])
else:
print("Using the specified bounding box instead of face detection...")
y1, y2, x1, x2 = box
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if self.static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch,
[len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1],
)
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch
def _load(self, checkpoint_path):
if self.device == "cuda":
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage
)
return checkpoint
def load_model(self, path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = self._load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace("module.", "")] = v
model.load_state_dict(new_s)
model = model.to(self.device)
return model.eval()
def run(
self,
face,
audio_file,
output_path="output.mp4",
resize_factor=4,
rotate=False,
crop=[0, -1, 0, -1],
fps=25,
mel_step_size=16,
wav2lip_batch_size=128,
):
if not os.path.isfile(face):
raise ValueError("--face argument must be a valid path to video/image file")
elif face.split(".")[1] in ["jpg", "png", "jpeg"]:
full_frames = [cv2.imread(face)]
fps = fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print("Reading video frames...")
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(
frame,
(
frame.shape[1] // resize_factor,
frame.shape[0] // resize_factor,
),
)
if rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print("Number of frames available for inference: " + str(len(full_frames)))
if not audio_file.endswith(".wav"):
print("Extracting raw audio_files...")
command = "ffmpeg -y -i {} -strict -2 {}".format(
audio_file, f"{os.path.join('temp','temp.wav')}"
)
subprocess.call(command, shell=True)
audio_file = os.path.join("temp", "temp.wav")
wav = audio.load_wav(audio_file, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
)
mel_chunks = []
mel_idx_multiplier = 80.0 / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[: len(mel_chunks)]
print("Full Frames before gen : ", len(full_frames))
batch_size = wav2lip_batch_size
gen = self.datagen(full_frames.copy(), mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(
tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))
):
if i == 0:
model = self.load_model(self.checkpoint_path)
print("Model loaded")
generated_temp_video_path = os.path.join(
"temp",
f"{datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}_result.avi",
)
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter(
generated_temp_video_path,
cv2.VideoWriter_fourcc(*"DIVX"),
fps,
(frame_w, frame_h),
)
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(
self.device
)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(
self.device
)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
# Load the video and audio_files clips
video_clip = VideoFileClip(generated_temp_video_path)
audio_clip = AudioFileClip(audio_file)
# Set the audio_files of the video clip to the loaded audio_files clip
video_clip = video_clip.set_audio(audio_clip)
# Write the combined video to a new file
video_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
if __name__ == "__main__":
processor = Processor()
processor.run("image_path", "audio_path")
|