File size: 11,098 Bytes
631641c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import cv2
import subprocess
import torch
import numpy as np
from tqdm import tqdm
from moviepy.editor import VideoFileClip, AudioFileClip
from models import Wav2Lip
import audio
from datetime import datetime
import shutil
import sys

# library_path = "../"

# sys.path.insert(1, library_path)
import util

class Processor:
    def __init__(

        self,

        checkpoint_path=os.path.join(

            "wav2lip_inference", "checkpoints", "wav2lip_gan.pth"

            # "checkpoints", "wav2lip.pth"

            # "checkpoints", "visual_quality_disc.pth"

        ),

        nosmooth=False,

        static=False,

    ):
        self.checkpoint_path = checkpoint_path
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.static = static
        self.nosmooth = nosmooth

    def get_smoothened_boxes(self, boxes, T):
        for i in range(len(boxes)):
            if i + T > len(boxes):
                window = boxes[len(boxes) - T :]
            else:
                window = boxes[i : i + T]
            boxes[i] = np.mean(window, axis=0)
        return boxes

    def face_detect(self, images):
        print("Detecting Faces")
        # Load the pre-trained Haar Cascade Classifier for face detection
        face_cascade = cv2.CascadeClassifier(
            os.path.join(
                "wav2lip_inference",
                "checkpoints",
                "haarcascade_frontalface_default.xml",
            )
        )  # cv2.data.haarcascades
        pads = [0, 10, 0, 0]
        results = []
        pady1, pady2, padx1, padx2 = pads

        for image in images:
            # Convert the image to grayscale for face detection
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

            # Detect faces in the grayscale image
            faces = face_cascade.detectMultiScale(
                gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
            )

            if len(faces) > 0:
                # Get the first detected face (you can modify this to handle multiple faces)
                x, y, w, h = faces[0]

                # Calculate the bounding box coordinates
                x1 = max(0, x - padx1)
                x2 = min(image.shape[1], x + w + padx2)
                y1 = max(0, y - pady1)
                y2 = min(image.shape[0], y + h + pady2)

                results.append([x1, y1, x2, y2])
            else:
                cv2.imwrite(
                    os.path.join("temp","faulty_frame.jpg"), image
                )  # Save the frame where the face was not detected.
                raise ValueError("Face not detected! Ensure the image contains a face.")

        boxes = np.array(results)
        if not self.nosmooth:
            boxes = self.get_smoothened_boxes(boxes, 5)
        results = [
            [image[y1:y2, x1:x2], (y1, y2, x1, x2)]
            for image, (x1, y1, x2, y2) in zip(images, boxes)
        ]

        return results

    def datagen(self, frames, mels):
        img_size = 96
        box = [-1, -1, -1, -1]
        wav2lip_batch_size = 128
        img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if box[0] == -1:
            if not self.static:
                face_det_results = self.face_detect(
                    frames
                )  # BGR2RGB for CNN face detection
            else:
                face_det_results = self.face_detect([frames[0]])
        else:
            print("Using the specified bounding box instead of face detection...")
            y1, y2, x1, x2 = box
            face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]

        for i, m in enumerate(mels):
            idx = 0 if self.static else i % len(frames)
            frame_to_save = frames[idx].copy()
            face, coords = face_det_results[idx].copy()

            face = cv2.resize(face, (img_size, img_size))
            img_batch.append(face)
            mel_batch.append(m)
            frame_batch.append(frame_to_save)
            coords_batch.append(coords)

            if len(img_batch) >= wav2lip_batch_size:
                img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

                img_masked = img_batch.copy()
                img_masked[:, img_size // 2 :] = 0

                img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
                mel_batch = np.reshape(
                    mel_batch,
                    [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1],
                )

                yield img_batch, mel_batch, frame_batch, coords_batch
                img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if len(img_batch) > 0:
            img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

            img_masked = img_batch.copy()
            img_masked[:, img_size // 2 :] = 0

            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
            mel_batch = np.reshape(
                mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
            )

            yield img_batch, mel_batch, frame_batch, coords_batch

    def _load(self, checkpoint_path):
        if self.device == "cuda":
            checkpoint = torch.load(checkpoint_path)
        else:
            checkpoint = torch.load(
                checkpoint_path, map_location=lambda storage, loc: storage
            )
        return checkpoint

    def load_model(self, path):
        model = Wav2Lip()
        print("Load checkpoint from: {}".format(path))
        checkpoint = self._load(path)
        s = checkpoint["state_dict"]
        new_s = {}
        for k, v in s.items():
            new_s[k.replace("module.", "")] = v
        model.load_state_dict(new_s)

        model = model.to(self.device)
        return model.eval()

    def run(

        self,

        face,

        audio_file,

        output_path="output.mp4",

        resize_factor=4,

        rotate=False,

        crop=[0, -1, 0, -1],

        fps=25,

        mel_step_size=16,

        wav2lip_batch_size=128,

    ):
        if not os.path.isfile(face):
            raise ValueError("--face argument must be a valid path to video/image file")

        elif face.split(".")[1] in ["jpg", "png", "jpeg"]:
            full_frames = [cv2.imread(face)]
            fps = fps

        else:
            video_stream = cv2.VideoCapture(face)
            fps = video_stream.get(cv2.CAP_PROP_FPS)

            print("Reading video frames...")

            full_frames = []
            while 1:
                still_reading, frame = video_stream.read()
                if not still_reading:
                    video_stream.release()
                    break
                if resize_factor > 1:
                    frame = cv2.resize(
                        frame,
                        (
                            frame.shape[1] // resize_factor,
                            frame.shape[0] // resize_factor,
                        ),
                    )

                if rotate:
                    frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)

                y1, y2, x1, x2 = crop
                if x2 == -1:
                    x2 = frame.shape[1]
                if y2 == -1:
                    y2 = frame.shape[0]

                frame = frame[y1:y2, x1:x2]

                full_frames.append(frame)

        print("Number of frames available for inference: " + str(len(full_frames)))

        if not audio_file.endswith(".wav"):
            print("Extracting raw audio_files...")
            command = "ffmpeg -y -i {} -strict -2 {}".format(
                audio_file, f"{os.path.join('temp','temp.wav')}"
            )

            subprocess.call(command, shell=True)
            audio_file = os.path.join("temp", "temp.wav")

        wav = audio.load_wav(audio_file, 16000)
        mel = audio.melspectrogram(wav)
        print(mel.shape)

        if np.isnan(mel.reshape(-1)).sum() > 0:
            raise ValueError(
                "Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
            )

        mel_chunks = []
        mel_idx_multiplier = 80.0 / fps
        i = 0
        while 1:
            start_idx = int(i * mel_idx_multiplier)
            if start_idx + mel_step_size > len(mel[0]):
                mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
                break
            mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
            i += 1

        print("Length of mel chunks: {}".format(len(mel_chunks)))

        full_frames = full_frames[: len(mel_chunks)]

        print("Full Frames before gen : ", len(full_frames))

        batch_size = wav2lip_batch_size
        gen = self.datagen(full_frames.copy(), mel_chunks)

        for i, (img_batch, mel_batch, frames, coords) in enumerate(
            tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))
        ):
            if i == 0:
                model = self.load_model(self.checkpoint_path)
                print("Model loaded")
                generated_temp_video_path = os.path.join(
                    "temp",
                    f"{datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}_result.avi",
                )
                frame_h, frame_w = full_frames[0].shape[:-1]
                out = cv2.VideoWriter(
                    generated_temp_video_path,
                    cv2.VideoWriter_fourcc(*"DIVX"),
                    fps,
                    (frame_w, frame_h),
                )

            img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(
                self.device
            )
            mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(
                self.device
            )

            with torch.no_grad():
                pred = model(mel_batch, img_batch)

            pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0

            for p, f, c in zip(pred, frames, coords):
                y1, y2, x1, x2 = c
                p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

                f[y1:y2, x1:x2] = p
                out.write(f)

        out.release()

        # Load the video and audio_files clips
        video_clip = VideoFileClip(generated_temp_video_path)
        audio_clip = AudioFileClip(audio_file)

        # Set the audio_files of the video clip to the loaded audio_files clip
        video_clip = video_clip.set_audio(audio_clip)

        # Write the combined video to a new file
        video_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")


if __name__ == "__main__":
    processor = Processor()
    processor.run("image_path", "audio_path")