--- language: - en datasets: - SNLI - MNLI tags: - zero-shot-classification --- A cross attention NLI model trained for zero-shot and few-shot text classification. The base model is [mpnet-base](https://huggingface.co./microsoft/mpnet-base), trained with the code from [here](https://github.com/facebookresearch/anli). on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/). Usage: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli") tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli") input_pairs = [("I like this pizza.", "The sentence is positive."), ("I like this pizza.", "The sentence is negative.")] inputs = tokenizer(["".join(input_pair) for input_pair in input_pairs], return_tensors="pt") logits = model(**inputs).logits probs = torch.softmax(logits, dim=1).tolist() print("probs", probs) np.testing.assert_almost_equal(probs, [[0.86, 0.14, 0.00], [0.16, 0.15, 0.69]], decimal=2) ```