svjack's picture
Upload folder using huggingface_hub
da486e2 verified
import argparse
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from utils import model_utils
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def convert_from_diffusers(prefix, weights_sd):
# convert from diffusers(?) to default LoRA
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
# note: Diffusers has no alpha, so alpha is set to rank
new_weights_sd = {}
lora_dims = {}
for key, weight in weights_sd.items():
diffusers_prefix, key_body = key.split(".", 1)
if diffusers_prefix != "diffusion_model":
logger.warning(f"unexpected key: {key} in diffusers format")
continue
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
new_weights_sd[new_key] = weight
lora_name = new_key.split(".")[0] # before first dot
if lora_name not in lora_dims and "lora_down" in new_key:
lora_dims[lora_name] = weight.shape[0]
# add alpha with rank
for lora_name, dim in lora_dims.items():
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
return new_weights_sd
def convert_to_diffusers(prefix, weights_sd):
# convert from default LoRA to diffusers
# get alphas
lora_alphas = {}
for key, weight in weights_sd.items():
if key.startswith(prefix):
lora_name = key.split(".", 1)[0] # before first dot
if lora_name not in lora_alphas and "alpha" in key:
lora_alphas[lora_name] = weight
new_weights_sd = {}
for key, weight in weights_sd.items():
if key.startswith(prefix):
if "alpha" in key:
continue
lora_name = key.split(".", 1)[0] # before first dot
# HunyuanVideo lora name to module name: ugly but works
module_name = lora_name[len(prefix) :] # remove "lora_unet_"
module_name = module_name.replace("_", ".") # replace "_" with "."
module_name = module_name.replace("double.blocks.", "double_blocks.") # fix double blocks
module_name = module_name.replace("single.blocks.", "single_blocks.") # fix single blocks
module_name = module_name.replace("img.", "img_") # fix img
module_name = module_name.replace("txt.", "txt_") # fix txt
module_name = module_name.replace("attn.", "attn_") # fix attn
diffusers_prefix = "diffusion_model"
if "lora_down" in key:
new_key = f"{diffusers_prefix}.{module_name}.lora_A.weight"
dim = weight.shape[0]
elif "lora_up" in key:
new_key = f"{diffusers_prefix}.{module_name}.lora_B.weight"
dim = weight.shape[1]
else:
logger.warning(f"unexpected key: {key} in default LoRA format")
continue
# scale weight by alpha
if lora_name in lora_alphas:
# we scale both down and up, so scale is sqrt
scale = lora_alphas[lora_name] / dim
scale = scale.sqrt()
weight = weight * scale
else:
logger.warning(f"missing alpha for {lora_name}")
new_weights_sd[new_key] = weight
return new_weights_sd
def convert(input_file, output_file, target_format):
logger.info(f"loading {input_file}")
weights_sd = load_file(input_file)
with safe_open(input_file, framework="pt") as f:
metadata = f.metadata()
logger.info(f"converting to {target_format}")
prefix = "lora_unet_"
if target_format == "default":
new_weights_sd = convert_from_diffusers(prefix, weights_sd)
metadata = metadata or {}
model_utils.precalculate_safetensors_hashes(new_weights_sd, metadata)
elif target_format == "other":
new_weights_sd = convert_to_diffusers(prefix, weights_sd)
else:
raise ValueError(f"unknown target format: {target_format}")
logger.info(f"saving to {output_file}")
save_file(new_weights_sd, output_file, metadata=metadata)
logger.info("done")
def parse_args():
parser = argparse.ArgumentParser(description="Convert LoRA weights between default and other formats")
parser.add_argument("--input", type=str, required=True, help="input model file")
parser.add_argument("--output", type=str, required=True, help="output model file")
parser.add_argument("--target", type=str, required=True, choices=["other", "default"], help="target format")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
convert(args.input, args.output, args.target)