Genshin_Impact_XiangLing_HunyuanVideo_lora / cache_text_encoder_outputs.py
svjack's picture
Upload folder using huggingface_hub
da486e2 verified
import argparse
import os
from typing import Optional, Union
import numpy as np
import torch
from tqdm import tqdm
from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import accelerate
from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
from hunyuan_model import text_encoder as text_encoder_module
from hunyuan_model.text_encoder import TextEncoder
import logging
from utils.model_utils import str_to_dtype
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
return prompt_outputs.hidden_state, prompt_outputs.attention_mask
def encode_and_save_batch(
text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
):
prompts = [item.caption for item in batch]
# print(prompts)
# encode prompt
if accelerator is not None:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
else:
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
# # convert to fp16 if needed
# if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
# prompt_embeds = prompt_embeds.to(text_encoder.dtype)
# save prompt cache
for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
save_text_encoder_output_cache(item, embed, mask, is_llm)
def main(args):
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
datasets = train_dataset_group.datasets
# define accelerator for fp8 inference
accelerator = None
if args.fp8_llm:
accelerator = accelerate.Accelerator(mixed_precision="fp16")
# define encode function
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
for i, dataset in enumerate(datasets):
print(f"Encoding dataset [{i}]")
for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
if args.skip_existing:
filtered_batch = [item for item in batch if not os.path.exists(item.text_encoder_output_cache_path)]
if len(filtered_batch) == 0:
continue
batch = filtered_batch
bs = args.batch_size if args.batch_size is not None else len(batch)
for i in range(0, len(batch), bs):
encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)
# Load Text Encoder 1
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {args.text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
text_encoder_1.to(device=device)
# Encode with Text Encoder 1
logger.info("Encoding with Text Encoder 1")
encode_for_text_encoder(text_encoder_1, is_llm=True)
del text_encoder_1
# Load Text Encoder 2
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
text_encoder_2.to(device=device)
# Encode with Text Encoder 2
logger.info("Encoding with Text Encoder 2")
encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
def setup_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
)
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
main(args)