File size: 1,616 Bytes
328b804 403728c 328b804 b573d20 328b804 b573d20 403728c 328b804 b1326b5 328b804 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: svenbl80/xlnet-base-cased-finetuned-mnli
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# svenbl80/xlnet-base-cased-finetuned-mnli
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3364
- Validation Loss: 0.3842
- Train Accuracy: 0.8598
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4828 | 0.4066 | 0.8426 | 0 |
| 0.3364 | 0.3842 | 0.8598 | 1 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.9.1
- Datasets 2.15.0
- Tokenizers 0.15.0
|