sushruth13 commited on
Commit
4962103
·
1 Parent(s): 850899f

Training in progress epoch 0

Browse files
Files changed (6) hide show
  1. README.md +33 -41
  2. config.json +22 -2
  3. special_tokens_map.json +19 -0
  4. tf_model.h5 +2 -2
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +26 -0
README.md CHANGED
@@ -1,62 +1,54 @@
1
  ---
2
- language: en
3
  license: mit
4
- datasets:
5
- - bookcorpus
6
- - wikipedia
 
 
7
  ---
8
 
9
- # XLNet (base-sized model)
 
10
 
11
- XLNet model pre-trained on English language. It was introduced in the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Yang et al. and first released in [this repository](https://github.com/zihangdai/xlnet/).
12
 
13
- Disclaimer: The team releasing XLNet did not write a model card for this model so this model card has been written by the Hugging Face team.
 
 
 
 
 
14
 
15
  ## Model description
16
 
17
- XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking.
18
 
19
  ## Intended uses & limitations
20
 
21
- The model is mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlnet) to look for fine-tuned versions on a task that interests you.
22
 
23
- Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2.
24
 
25
- ## Usage
26
 
27
- Here is how to use this model to get the features of a given text in PyTorch:
28
 
29
- ```python
30
- from transformers import XLNetTokenizer, XLNetModel
31
 
32
- tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
33
- model = XLNetModel.from_pretrained('xlnet-base-cased')
 
34
 
35
- inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
36
- outputs = model(**inputs)
37
 
38
- last_hidden_states = outputs.last_hidden_state
39
- ```
 
40
 
41
- ### BibTeX entry and citation info
42
 
43
- ```bibtex
44
- @article{DBLP:journals/corr/abs-1906-08237,
45
- author = {Zhilin Yang and
46
- Zihang Dai and
47
- Yiming Yang and
48
- Jaime G. Carbonell and
49
- Ruslan Salakhutdinov and
50
- Quoc V. Le},
51
- title = {XLNet: Generalized Autoregressive Pretraining for Language Understanding},
52
- journal = {CoRR},
53
- volume = {abs/1906.08237},
54
- year = {2019},
55
- url = {http://arxiv.org/abs/1906.08237},
56
- eprinttype = {arXiv},
57
- eprint = {1906.08237},
58
- timestamp = {Mon, 24 Jun 2019 17:28:45 +0200},
59
- biburl = {https://dblp.org/rec/journals/corr/abs-1906-08237.bib},
60
- bibsource = {dblp computer science bibliography, https://dblp.org}
61
- }
62
- ```
 
1
  ---
 
2
  license: mit
3
+ tags:
4
+ - generated_from_keras_callback
5
+ model-index:
6
+ - name: sushruth13/xlnet_base1.0
7
+ results: []
8
  ---
9
 
10
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
+ probably proofread and complete it, then remove this comment. -->
12
 
13
+ # sushruth13/xlnet_base1.0
14
 
15
+ This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Train Loss: 1.9286
18
+ - Validation Loss: 1.9409
19
+ - Train Accuracy: 0.3077
20
+ - Epoch: 0
21
 
22
  ## Model description
23
 
24
+ More information needed
25
 
26
  ## Intended uses & limitations
27
 
28
+ More information needed
29
 
30
+ ## Training and evaluation data
31
 
32
+ More information needed
33
 
34
+ ## Training procedure
35
 
36
+ ### Training hyperparameters
 
37
 
38
+ The following hyperparameters were used during training:
39
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3050, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
40
+ - training_precision: float32
41
 
42
+ ### Training results
 
43
 
44
+ | Train Loss | Validation Loss | Train Accuracy | Epoch |
45
+ |:----------:|:---------------:|:--------------:|:-----:|
46
+ | 1.9286 | 1.9409 | 0.3077 | 0 |
47
 
 
48
 
49
+ ### Framework versions
50
+
51
+ - Transformers 4.28.1
52
+ - TensorFlow 2.12.0
53
+ - Datasets 2.11.0
54
+ - Tokenizers 0.13.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,6 +1,7 @@
1
  {
 
2
  "architectures": [
3
- "XLNetLMHeadModel"
4
  ],
5
  "attn_type": "bi",
6
  "bi_data": false,
@@ -13,7 +14,23 @@
13
  "end_n_top": 5,
14
  "eos_token_id": 2,
15
  "ff_activation": "gelu",
 
 
 
 
 
 
 
 
16
  "initializer_range": 0.02,
 
 
 
 
 
 
 
 
17
  "layer_norm_eps": 1e-12,
18
  "mem_len": null,
19
  "model_type": "xlnet",
@@ -33,6 +50,9 @@
33
  "max_length": 250
34
  }
35
  },
 
36
  "untie_r": true,
 
 
37
  "vocab_size": 32000
38
- }
 
1
  {
2
+ "_name_or_path": "xlnet-base-cased",
3
  "architectures": [
4
+ "XLNetForSequenceClassification"
5
  ],
6
  "attn_type": "bi",
7
  "bi_data": false,
 
14
  "end_n_top": 5,
15
  "eos_token_id": 2,
16
  "ff_activation": "gelu",
17
+ "id2label": {
18
+ "0": "broadside",
19
+ "1": "side swipe",
20
+ "2": "hit object",
21
+ "3": "head-on",
22
+ "4": "rear end",
23
+ "5": "other"
24
+ },
25
  "initializer_range": 0.02,
26
+ "label2id": {
27
+ "broadside": 0,
28
+ "head-on": 3,
29
+ "hit object": 2,
30
+ "other": 5,
31
+ "rear end": 4,
32
+ "side swipe": 1
33
+ },
34
  "layer_norm_eps": 1e-12,
35
  "mem_len": null,
36
  "model_type": "xlnet",
 
50
  "max_length": 250
51
  }
52
  },
53
+ "transformers_version": "4.28.1",
54
  "untie_r": true,
55
+ "use_mems_eval": true,
56
+ "use_mems_train": false,
57
  "vocab_size": 32000
58
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<eop>",
4
+ "<eod>"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "cls_token": "<cls>",
8
+ "eos_token": "</s>",
9
+ "mask_token": {
10
+ "content": "<mask>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "sep_token": "<sep>",
18
+ "unk_token": "<unk>"
19
+ }
tf_model.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c91def0a6a0adae911fed1630194d76497736887380848054494ed9ed9324c32
3
- size 565485600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f5e575f6f5494c90d143c1ca2450b7e2332404b836b415f25a15933979a9632
3
+ size 469461000
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<eop>",
4
+ "<eod>"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "clean_up_tokenization_spaces": true,
8
+ "cls_token": "<cls>",
9
+ "do_lower_case": false,
10
+ "eos_token": "</s>",
11
+ "keep_accents": false,
12
+ "mask_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<mask>",
15
+ "lstrip": true,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "model_max_length": 1000000000000000019884624838656,
21
+ "pad_token": "<pad>",
22
+ "remove_space": true,
23
+ "sep_token": "<sep>",
24
+ "tokenizer_class": "XLNetTokenizer",
25
+ "unk_token": "<unk>"
26
+ }