File size: 2,781 Bytes
5a705e8 0f4d23d 5a705e8 6bea83a 5a705e8 9c96d0b 5a705e8 9c96d0b 5a705e8 9c96d0b 5a705e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model_creators:
- Jordan Painter, Diptesh Kanojia
widget:
- text: wow, i mean who would have thought
base_model: vinai/bertweet-base
model-index:
- name: bertweet-base-finetuned-SARC-combined-DS
results: []
---
# Utilising Weak Supervision to Create S3D: A Sarcasm Annotated Dataset
This is the repository for the S3D dataset published at EMNLP 2022. The dataset can help build sarcasm detection models.
# bertweet-base-finetuned-SARC-combined-DS
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) on our combined sarcasm dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4624
- Accuracy: 0.7611
- Precision: 0.7611
- Recall: 0.7611
- F1: 0.7611
## Model description
The given description for BERTweet by VinAI is as follows: <br>
BERTweet is the first public large-scale language model pre-trained for English Tweets. BERTweet is trained based on the RoBERTa pre-training procedure. The corpus used to pre-train BERTweet consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related to the COVID-19 pandemic.
<br>
## Training and evaluation data
More information neededThis [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) model was finetuned on our combined sarcasm dataset. This dataset was created to aid the building of sarcasm detection models
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 43
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4319 | 4.0 | 44819 | 0.5049 | 0.7790 | 0.7796 | 0.7789 | 0.7789 |
| 0.2835 | 8.0 | 89638 | 0.6475 | 0.7663 | 0.7664 | 0.7663 | 0.7663 |
| 0.1797 | 12.0 | 134457 | 0.8746 | 0.7638 | 0.7639 | 0.7637 | 0.7637 |
| 0.1219 | 16.0 | 179276 | 1.0595 | 0.7585 | 0.7597 | 0.7587 | 0.7583 |
| 0.0905 | 20.0 | 224095 | 1.2115 | 0.7611 | 0.7612 | 0.7612 | 0.7611 |
| 0.0728 | 24.0 | 268914 | 1.3644 | 0.7628 | 0.7629 | 0.7627 | 0.7627 |
| 0.0612 | 28.0 | 313733 | 1.4624 | 0.7611 | 0.7611 | 0.7611 | 0.7611 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1
|