--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0 model-index: - name: T3Q-LLM-sft1.0-dpo1.0_4300QA results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0 base_model_config: T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: true hub_model_id: T3Q-LLM-sft1.0-dpo1.0_4300QA load_in_8bit: false load_in_4bit: true strict: false datasets: # - path: admin_data.csv - path: superiort/multiplechoice-4300 type: alpaca # The below are defaults. only set what's needed if you use a different column name. # system_prompt: "" # system_format: "{system}" # field_system: system # field_instruction: instruction # field_input: input # field_output: output # format: |- # Human: {instruction} {input} # Assistant: # no_input_format: "{instruction} " # dataset_prepared_path: yanolja_preprocessed_data dataset_prepared_path: last_run_prepared val_set_size: 0.2 output_dir: ./T3Q-LLM-sft1.0-dpo1.0_4300QA adapter: qlora lora_model_dir: # device_map: [0,1,3] sequence_len: 4096 sample_packing: false lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl_T3Q_4300 wandb_entity: wandb_watch: wandb_run_id: T3Q_mod_4300 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 10 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 0.01 save_strategy: epoch save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" pad_token: "" # EOS와 PAD가 동일 ```

# T3Q-LLM-sft1.0-dpo1.0_4300QA This model is a fine-tuned version of [T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0](https://huggingface.co./T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2424 | 0.0093 | 1 | 1.0432 | | 1.0333 | 0.1023 | 11 | 0.9004 | | 0.8715 | 0.2047 | 22 | 0.7157 | | 0.7053 | 0.3070 | 33 | 0.6548 | | 0.6688 | 0.4093 | 44 | 0.6449 | | 0.6823 | 0.5116 | 55 | 0.6282 | | 0.5876 | 0.6140 | 66 | 0.6251 | | 0.6994 | 0.7163 | 77 | 0.6290 | | 0.6662 | 0.8186 | 88 | 0.6311 | | 0.6239 | 0.9209 | 99 | 0.6338 | | 0.5959 | 1.0233 | 110 | 0.6319 | | 0.6408 | 1.1256 | 121 | 0.6668 | | 0.595 | 1.2279 | 132 | 0.6221 | | 0.5476 | 1.3302 | 143 | 0.6295 | | 0.587 | 1.4326 | 154 | 0.6569 | | 0.5867 | 1.5349 | 165 | 0.6208 | | 0.5895 | 1.6372 | 176 | 0.6264 | | 0.6581 | 1.7395 | 187 | 0.6208 | | 0.5872 | 1.8419 | 198 | 0.6290 | | 0.6314 | 1.9442 | 209 | 0.6243 | | 0.4397 | 2.0465 | 220 | 0.6591 | | 0.4568 | 2.1488 | 231 | 0.7095 | | 0.422 | 2.2512 | 242 | 0.6914 | | 0.453 | 2.3535 | 253 | 0.7001 | | 0.4678 | 2.4558 | 264 | 0.6896 | | 0.4335 | 2.5581 | 275 | 0.6776 | | 0.4796 | 2.6605 | 286 | 0.6829 | | 0.4637 | 2.7628 | 297 | 0.6742 | | 0.4532 | 2.8651 | 308 | 0.6828 | | 0.4348 | 2.9674 | 319 | 0.6836 | | 0.2787 | 3.0698 | 330 | 0.8085 | | 0.2336 | 3.1721 | 341 | 0.8380 | | 0.2341 | 3.2744 | 352 | 0.7998 | | 0.2393 | 3.3767 | 363 | 0.8041 | | 0.2826 | 3.4791 | 374 | 0.8040 | | 0.2505 | 3.5814 | 385 | 0.8099 | | 0.3057 | 3.6837 | 396 | 0.8103 | | 0.2789 | 3.7860 | 407 | 0.7964 | | 0.269 | 3.8884 | 418 | 0.7891 | | 0.2493 | 3.9907 | 429 | 0.7958 | | 0.1193 | 4.0930 | 440 | 0.9242 | | 0.1143 | 4.1953 | 451 | 0.9331 | | 0.1147 | 4.2977 | 462 | 0.9112 | | 0.1351 | 4.4 | 473 | 0.9290 | | 0.0982 | 4.5023 | 484 | 0.9358 | | 0.1011 | 4.6047 | 495 | 0.9279 | | 0.09 | 4.7070 | 506 | 0.9289 | | 0.1063 | 4.8093 | 517 | 0.9392 | | 0.1038 | 4.9116 | 528 | 0.9267 | | 0.0361 | 5.0140 | 539 | 0.9412 | | 0.0371 | 5.1163 | 550 | 1.0589 | | 0.033 | 5.2186 | 561 | 1.0253 | | 0.0426 | 5.3209 | 572 | 1.0482 | | 0.0357 | 5.4233 | 583 | 1.0388 | | 0.0355 | 5.5256 | 594 | 1.0566 | | 0.0373 | 5.6279 | 605 | 1.0470 | | 0.0395 | 5.7302 | 616 | 1.0581 | | 0.0366 | 5.8326 | 627 | 1.0696 | | 0.0387 | 5.9349 | 638 | 1.0641 | | 0.0127 | 6.0372 | 649 | 1.0692 | | 0.0114 | 6.1395 | 660 | 1.1612 | | 0.0105 | 6.2419 | 671 | 1.1575 | | 0.0121 | 6.3442 | 682 | 1.1479 | | 0.0082 | 6.4465 | 693 | 1.1591 | | 0.011 | 6.5488 | 704 | 1.1669 | | 0.0112 | 6.6512 | 715 | 1.1645 | | 0.0109 | 6.7535 | 726 | 1.1628 | | 0.0102 | 6.8558 | 737 | 1.1705 | | 0.0098 | 6.9581 | 748 | 1.1769 | | 0.006 | 7.0605 | 759 | 1.1840 | | 0.0064 | 7.1628 | 770 | 1.2016 | | 0.0063 | 7.2651 | 781 | 1.2133 | | 0.0058 | 7.3674 | 792 | 1.2182 | | 0.0056 | 7.4698 | 803 | 1.2218 | | 0.0057 | 7.5721 | 814 | 1.2234 | | 0.0059 | 7.6744 | 825 | 1.2245 | | 0.0057 | 7.7767 | 836 | 1.2247 | | 0.0048 | 7.8791 | 847 | 1.2247 | | 0.0054 | 7.9814 | 858 | 1.2246 | | 0.0051 | 8.0837 | 869 | 1.2252 | | 0.0059 | 8.1860 | 880 | 1.2261 | | 0.0053 | 8.2884 | 891 | 1.2272 | | 0.0057 | 8.3907 | 902 | 1.2275 | | 0.0056 | 8.4930 | 913 | 1.2280 | | 0.0052 | 8.5953 | 924 | 1.2283 | | 0.007 | 8.6977 | 935 | 1.2287 | | 0.0052 | 8.8 | 946 | 1.2285 | | 0.005 | 8.9023 | 957 | 1.2289 | | 0.0056 | 9.0047 | 968 | 1.2288 | | 0.005 | 9.1070 | 979 | 1.2289 | | 0.0054 | 9.2093 | 990 | 1.2290 | | 0.0053 | 9.3116 | 1001 | 1.2288 | | 0.0049 | 9.4140 | 1012 | 1.2290 | | 0.0052 | 9.5163 | 1023 | 1.2290 | | 0.0058 | 9.6186 | 1034 | 1.2291 | | 0.0059 | 9.7209 | 1045 | 1.2289 | | 0.0055 | 9.8233 | 1056 | 1.2289 | | 0.0054 | 9.9256 | 1067 | 1.2288 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.19.1