sun1638650145 commited on
Commit
682b178
1 Parent(s): cd26152

Push Q-Learning agent to Hub

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +35 -0
  3. q-learning.pkl +0 -0
  4. replay.mp4 +3 -0
  5. results.json +1 -0
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - FrozenLake-v1-4x4-no_slippery
4
+ - q-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ model-index:
8
+ - name: q-FrozenLake-v1-4x4-noSlippery
9
+ results:
10
+ - metrics:
11
+ - type: mean_reward
12
+ value: 1.00 +/- 0.00
13
+ name: mean_reward
14
+ task:
15
+ type: reinforcement-learning
16
+ name: reinforcement-learning
17
+ dataset:
18
+ name: FrozenLake-v1-4x4-no_slippery
19
+ type: FrozenLake-v1-4x4-no_slippery
20
+ ---
21
+
22
+ # 使用**Q-Learning**智能体来玩**FrozenLake-v1**
23
+ 这是一个使用**Q-Learning**训练有素的模型玩**FrozenLake-v1**.
24
+
25
+ ## 用法
26
+ ```python
27
+ model = load_from_hub(repo_id='sun1638650145/q-FrozenLake-v1-4x4-noSlippery', filename='q-learning.pkl')
28
+
29
+ # 不要忘记检查是否需要添加额外的参数(例如is_slippery=False)
30
+ env = gym.make(model['env_id'])
31
+
32
+ evaluate_agent(env, model['max_steps'], model['n_eval_episodes'], model['qtable'], model['eval_seed'])
33
+
34
+ ```
35
+
q-learning.pkl ADDED
Binary file (933 Bytes). View file
 
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccd5756784af17a7f75cad20bf1f1c49547b6f57851856cdd49f0a967bcbbbf1
3
+ size 32044
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"env_id": "FrozenLake-v1", "mean_reward": 1.0, "n_eval_episodes": 100, "eval_datetime": "2022-06-17T11:02:11.890454"}