sudo-s commited on
Commit
ef61f13
·
1 Parent(s): 0a9701f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: exper4_mesum5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # exper4_mesum5
16
+
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 3.4389
20
+ - Accuracy: 0.1331
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 3.3793 | 0.23 | 100 | 3.4527 | 0.1308 |
53
+ | 3.2492 | 0.47 | 200 | 3.4501 | 0.1331 |
54
+ | 3.3847 | 0.7 | 300 | 3.4500 | 0.1272 |
55
+ | 3.3739 | 0.93 | 400 | 3.4504 | 0.1320 |
56
+ | 3.4181 | 1.16 | 500 | 3.4452 | 0.1320 |
57
+ | 3.214 | 1.4 | 600 | 3.4503 | 0.1320 |
58
+ | 3.282 | 1.63 | 700 | 3.4444 | 0.1325 |
59
+ | 3.5308 | 1.86 | 800 | 3.4473 | 0.1337 |
60
+ | 3.2251 | 2.09 | 900 | 3.4415 | 0.1361 |
61
+ | 3.4385 | 2.33 | 1000 | 3.4408 | 0.1343 |
62
+ | 3.3702 | 2.56 | 1100 | 3.4406 | 0.1325 |
63
+ | 3.366 | 2.79 | 1200 | 3.4411 | 0.1355 |
64
+ | 3.2022 | 3.02 | 1300 | 3.4403 | 0.1308 |
65
+ | 3.2768 | 3.26 | 1400 | 3.4394 | 0.1320 |
66
+ | 3.3444 | 3.49 | 1500 | 3.4394 | 0.1314 |
67
+ | 3.2981 | 3.72 | 1600 | 3.4391 | 0.1331 |
68
+ | 3.3349 | 3.95 | 1700 | 3.4389 | 0.1331 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.20.1
74
+ - Pytorch 1.12.0+cu113
75
+ - Datasets 2.3.2
76
+ - Tokenizers 0.12.1