File size: 2,337 Bytes
7c50071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cola-teacher
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cola-teacher

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3687
- Accuracy: 0.8207
- F1: 0.8793
- Precision: 0.8225
- Recall: 0.9445

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5177        | 1.0   | 535  | 0.4576          | 0.7977   | 0.8677 | 0.7918    | 0.9598 |
| 0.3187        | 2.0   | 1070 | 0.4655          | 0.8159   | 0.8764 | 0.8175    | 0.9445 |
| 0.2035        | 3.0   | 1605 | 0.6732          | 0.8111   | 0.8731 | 0.8149    | 0.9404 |
| 0.1495        | 4.0   | 2140 | 0.9194          | 0.8130   | 0.8751 | 0.8131    | 0.9473 |
| 0.1041        | 5.0   | 2675 | 0.9687          | 0.8226   | 0.8819 | 0.8168    | 0.9584 |
| 0.0823        | 6.0   | 3210 | 1.1245          | 0.8226   | 0.8804 | 0.8245    | 0.9445 |
| 0.0552        | 7.0   | 3745 | 1.0909          | 0.8274   | 0.8834 | 0.8287    | 0.9459 |
| 0.0427        | 8.0   | 4280 | 1.2896          | 0.8236   | 0.8808 | 0.8262    | 0.9431 |
| 0.0278        | 9.0   | 4815 | 1.3355          | 0.8226   | 0.8804 | 0.8245    | 0.9445 |
| 0.023         | 10.0  | 5350 | 1.3687          | 0.8207   | 0.8793 | 0.8225    | 0.9445 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1