import torch import torch.nn as nn class LSTMClassifier(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout, output_size=1): super(LSTMClassifier, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) c_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) out, _ = self.lstm(x, (h_0, c_0)) out = self.fc(out[:, -1, :]) out = torch.sigmoid_(out) return out class LSTMClassifierB(nn.Module): def __init__(self, input_size, hidden_size, dropout, num_layers): super(LSTMClassifierB, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True) fc_layers = [] input_dim = hidden_size fc_layers.append(nn.Linear(input_dim, input_dim)) fc_layers.append(nn.ReLU()) fc_layers.append(nn.Linear(input_dim, 1)) # Output layer for binary classification self.fc = nn.Sequential(*fc_layers) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) # Only take the output from the last time step out = torch.sigmoid(out) # Apply sigmoid activation return out class LSTMClassifierC(nn.Module): def __init__(self, input_size, hidden_size, num_layers, sequence_length): super(LSTMClassifierC, self).__init__() self.hidden_size = hidden_size # Number of features in the hidden state self.num_layers = num_layers # Number of recurrent layers in the LSTM self.sequence_length = sequence_length # Length of the input sequences self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # Single linear layer after flattening the LSTM output self.fc = nn.Linear(hidden_size * sequence_length, 1) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = out.reshape(out.size(0), -1) # Flatten the sequence out = self.fc(out) # Pass through the single linear layer out = torch.sigmoid(out) # Apply sigmoid activation return out