suayptalha
commited on
Update modeling_minGRULM.py
Browse files- modeling_minGRULM.py +21 -6
modeling_minGRULM.py
CHANGED
@@ -13,7 +13,7 @@ class MinGRULMWrapped(nn.Module):
|
|
13 |
def __init__(self, min_gru_model):
|
14 |
super().__init__()
|
15 |
self.min_gru_model = min_gru_model
|
16 |
-
self.device = torch.device("cuda")
|
17 |
|
18 |
def forward(self, *args, **kwargs):
|
19 |
# Move input tensors to the correct device
|
@@ -45,9 +45,11 @@ class MinGRULMPreTrainedModel(PreTrainedModel):
|
|
45 |
elif isinstance(module, nn.LayerNorm):
|
46 |
module.bias.data.zero_()
|
47 |
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
class MinGRULMForCausalLM(MinGRULMPreTrainedModel):
|
51 |
def __init__(self, config: MinGRULMConfig):
|
52 |
super().__init__(config)
|
53 |
|
@@ -68,9 +70,8 @@ class MinGRULMForCausalLM(MinGRULMPreTrainedModel):
|
|
68 |
self.post_init()
|
69 |
|
70 |
def post_init(self):
|
|
|
71 |
super().post_init()
|
72 |
-
|
73 |
-
# Ensure tied weights
|
74 |
self.tie_weights()
|
75 |
|
76 |
def tie_weights(self):
|
@@ -116,4 +117,18 @@ class MinGRULMForCausalLM(MinGRULMPreTrainedModel):
|
|
116 |
return CausalLMOutputWithPast(
|
117 |
loss=loss,
|
118 |
logits=logits,
|
119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def __init__(self, min_gru_model):
|
14 |
super().__init__()
|
15 |
self.min_gru_model = min_gru_model
|
16 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
def forward(self, *args, **kwargs):
|
19 |
# Move input tensors to the correct device
|
|
|
45 |
elif isinstance(module, nn.LayerNorm):
|
46 |
module.bias.data.zero_()
|
47 |
module.weight.data.fill_(1.0)
|
48 |
+
|
49 |
+
class MinGRULMForCausalLM(PreTrainedModel):
|
50 |
+
config_class = MinGRULMConfig
|
51 |
+
base_model_prefix = "model"
|
52 |
|
|
|
|
|
53 |
def __init__(self, config: MinGRULMConfig):
|
54 |
super().__init__(config)
|
55 |
|
|
|
70 |
self.post_init()
|
71 |
|
72 |
def post_init(self):
|
73 |
+
# Ensure tied weights and any additional setup
|
74 |
super().post_init()
|
|
|
|
|
75 |
self.tie_weights()
|
76 |
|
77 |
def tie_weights(self):
|
|
|
117 |
return CausalLMOutputWithPast(
|
118 |
loss=loss,
|
119 |
logits=logits,
|
120 |
+
)
|
121 |
+
|
122 |
+
@classmethod
|
123 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
124 |
+
"""
|
125 |
+
Load model from a pretrained checkpoint.
|
126 |
+
"""
|
127 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
128 |
+
return model
|
129 |
+
|
130 |
+
def save_pretrained(self, save_directory):
|
131 |
+
"""
|
132 |
+
Save the model and configuration to a directory.
|
133 |
+
"""
|
134 |
+
super().save_pretrained(save_directory)
|