|
import torch |
|
from torch import nn |
|
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from torch.nn import CrossEntropyLoss |
|
from typing import Optional |
|
from .configuration_minGRULM import MinGRULMConfig |
|
from minGRU_pytorch.minGRULM import minGRULM |
|
|
|
|
|
|
|
class MinGRULMWrapped(nn.Module): |
|
def __init__(self, min_gru_model): |
|
super().__init__() |
|
self.min_gru_model = min_gru_model |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def forward(self, *args, **kwargs): |
|
|
|
args = [arg.to(self.device) if isinstance(arg, torch.Tensor) else arg for arg in args] |
|
kwargs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()} |
|
return self.min_gru_model(*args, **kwargs) |
|
|
|
def to(self, device): |
|
|
|
self.device = device |
|
self.min_gru_model.to(device) |
|
return self |
|
|
|
|
|
|
|
class MinGRULMPreTrainedModel(PreTrainedModel): |
|
config_class = MinGRULMConfig |
|
base_model_prefix = "model" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class MinGRULMForCausalLM(PreTrainedModel): |
|
config_class = MinGRULMConfig |
|
base_model_prefix = "model" |
|
|
|
def __init__(self, config: MinGRULMConfig): |
|
super().__init__(config) |
|
|
|
|
|
raw_min_gru = minGRULM( |
|
num_tokens=config.vocab_size, |
|
dim=config.d_model, |
|
depth=config.n_layer, |
|
ff_mult=config.ff_mult, |
|
min_gru_expansion=config.min_gru_expansion, |
|
enable_conv=config.enable_conv, |
|
) |
|
self.model = MinGRULMWrapped(raw_min_gru) |
|
|
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def post_init(self): |
|
|
|
super().post_init() |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
|
|
self.lm_head.weight = self.model.min_gru_model.token_emb.weight |
|
|
|
def get_input_embeddings(self): |
|
return self.model.min_gru_model.token_emb |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.min_gru_model.token_emb = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs): |
|
|
|
return {"input_ids": input_ids, "attention_mask": kwargs.get("attention_mask", None)} |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = True, |
|
**kwargs |
|
): |
|
|
|
logits = self.model(input_ids) |
|
|
|
loss = None |
|
if labels is not None: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, self.config.vocab_size), |
|
shift_labels.view(-1), |
|
) |
|
|
|
if not return_dict: |
|
return (loss, logits) if loss is not None else (logits,) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
) |
|
|
|
def state_dict(self): |
|
""" |
|
Custom state_dict function to return the model's state dict. |
|
This includes the wrapped model and any extra components like the language model head. |
|
""" |
|
state_dict = {} |
|
|
|
|
|
state_dict['model'] = self.model.min_gru_model.state_dict() |
|
|
|
|
|
state_dict['lm_head'] = self.lm_head.state_dict() |
|
|
|
|
|
state_dict['config'] = self.config.state_dict() |
|
|
|
return state_dict |
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
""" |
|
Load model from a pretrained checkpoint. |
|
""" |
|
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
return model |
|
|
|
def save_pretrained(self, save_directory, safe_serialization: Optional[bool] = True): |
|
""" |
|
Save the model and configuration to a directory. |
|
|
|
Args: |
|
save_directory (str): Directory to save the model. |
|
safe_serialization (bool, optional): Whether to use safe serialization. Defaults to True. |
|
""" |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
if safe_serialization: |
|
print("Saving with safe serialization.") |
|
|
|
|
|
state_dict = self.state_dict() |
|
torch.save(state_dict, os.path.join(save_directory, "pytorch_model.bin")) |
|
|
|
|
|
self.config.save_pretrained(save_directory) |
|
else: |
|
print("Saving without safe serialization.") |
|
|
|
super().save_pretrained(save_directory) |
|
|