--- base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_2_0_Czert-B-base-cased results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8108016304347826 - name: Recall type: recall value: 0.8537195994277539 - name: F1 type: f1 value: 0.8317073170731707 - name: Accuracy type: accuracy value: 0.9456677151844438 --- # CNEC_2_0_Czert-B-base-cased This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co./UWB-AIR/Czert-B-base-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Precision: 0.8108 - Recall: 0.8537 - F1: 0.8317 - Accuracy: 0.9457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5129 | 2.22 | 500 | 0.2615 | 0.7602 | 0.7858 | 0.7728 | 0.9315 | | 0.1863 | 4.44 | 1000 | 0.2460 | 0.7845 | 0.8255 | 0.8045 | 0.9403 | | 0.1221 | 6.67 | 1500 | 0.2474 | 0.7969 | 0.8380 | 0.8169 | 0.9441 | | 0.0857 | 8.89 | 2000 | 0.2663 | 0.8028 | 0.8491 | 0.8253 | 0.9435 | | 0.0645 | 11.11 | 2500 | 0.2814 | 0.8081 | 0.8480 | 0.8276 | 0.9441 | | 0.052 | 13.33 | 3000 | 0.2818 | 0.8108 | 0.8537 | 0.8317 | 0.9457 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0