Model save
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: UWB-AIR/Czert-B-base-cased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- cnec
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: CNEC_2_0_Czert-B-base-cased
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: cnec
|
20 |
+
type: cnec
|
21 |
+
config: default
|
22 |
+
split: validation
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8108016304347826
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8537195994277539
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8317073170731707
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9456677151844438
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# CNEC_2_0_Czert-B-base-cased
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2818
|
47 |
+
- Precision: 0.8108
|
48 |
+
- Recall: 0.8537
|
49 |
+
- F1: 0.8317
|
50 |
+
- Accuracy: 0.9457
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 32
|
71 |
+
- eval_batch_size: 32
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 15
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.5129 | 2.22 | 500 | 0.2615 | 0.7602 | 0.7858 | 0.7728 | 0.9315 |
|
82 |
+
| 0.1863 | 4.44 | 1000 | 0.2460 | 0.7845 | 0.8255 | 0.8045 | 0.9403 |
|
83 |
+
| 0.1221 | 6.67 | 1500 | 0.2474 | 0.7969 | 0.8380 | 0.8169 | 0.9441 |
|
84 |
+
| 0.0857 | 8.89 | 2000 | 0.2663 | 0.8028 | 0.8491 | 0.8253 | 0.9435 |
|
85 |
+
| 0.0645 | 11.11 | 2500 | 0.2814 | 0.8081 | 0.8480 | 0.8276 | 0.9441 |
|
86 |
+
| 0.052 | 13.33 | 3000 | 0.2818 | 0.8108 | 0.8537 | 0.8317 | 0.9457 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.36.2
|
92 |
+
- Pytorch 2.1.2+cu121
|
93 |
+
- Datasets 2.16.1
|
94 |
+
- Tokenizers 0.15.0
|