stulcrad commited on
Commit
a737dac
·
verified ·
1 Parent(s): 73e1d2a

Model save

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: UWB-AIR/Czert-B-base-cased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cnec
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: CNEC_2_0_Czert-B-base-cased
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cnec
20
+ type: cnec
21
+ config: default
22
+ split: validation
23
+ args: default
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8108016304347826
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8537195994277539
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8317073170731707
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9456677151844438
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # CNEC_2_0_Czert-B-base-cased
43
+
44
+ This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2818
47
+ - Precision: 0.8108
48
+ - Recall: 0.8537
49
+ - F1: 0.8317
50
+ - Accuracy: 0.9457
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.5129 | 2.22 | 500 | 0.2615 | 0.7602 | 0.7858 | 0.7728 | 0.9315 |
82
+ | 0.1863 | 4.44 | 1000 | 0.2460 | 0.7845 | 0.8255 | 0.8045 | 0.9403 |
83
+ | 0.1221 | 6.67 | 1500 | 0.2474 | 0.7969 | 0.8380 | 0.8169 | 0.9441 |
84
+ | 0.0857 | 8.89 | 2000 | 0.2663 | 0.8028 | 0.8491 | 0.8253 | 0.9435 |
85
+ | 0.0645 | 11.11 | 2500 | 0.2814 | 0.8081 | 0.8480 | 0.8276 | 0.9441 |
86
+ | 0.052 | 13.33 | 3000 | 0.2818 | 0.8108 | 0.8537 | 0.8317 | 0.9457 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.36.2
92
+ - Pytorch 2.1.2+cu121
93
+ - Datasets 2.16.1
94
+ - Tokenizers 0.15.0