stulcrad commited on
Commit
1aa35b6
·
verified ·
1 Parent(s): 0c25ab9

Model save

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.8065730914070524
28
  - name: Recall
29
  type: recall
30
- value: 0.8426323319027181
31
  - name: F1
32
  type: f1
33
- value: 0.8242085009620429
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9442379182156134
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2748
47
- - Precision: 0.8066
48
- - Recall: 0.8426
49
- - F1: 0.8242
50
- - Accuracy: 0.9442
51
 
52
  ## Model description
53
 
@@ -66,9 +66,9 @@ More information needed
66
  ### Training hyperparameters
67
 
68
  The following hyperparameters were used during training:
69
- - learning_rate: 5e-05
70
- - train_batch_size: 4
71
- - eval_batch_size: 4
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
@@ -76,13 +76,13 @@ The following hyperparameters were used during training:
76
 
77
  ### Training results
78
 
79
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.3028 | 1.0 | 1799 | 0.2639 | 0.7483 | 0.7965 | 0.7717 | 0.9303 |
82
- | 0.2143 | 2.0 | 3598 | 0.2481 | 0.7808 | 0.8140 | 0.7971 | 0.9368 |
83
- | 0.127 | 3.0 | 5397 | 0.2458 | 0.8030 | 0.8237 | 0.8132 | 0.9399 |
84
- | 0.0797 | 4.0 | 7196 | 0.2606 | 0.8088 | 0.8487 | 0.8283 | 0.9444 |
85
- | 0.0456 | 5.0 | 8995 | 0.2748 | 0.8066 | 0.8426 | 0.8242 | 0.9442 |
86
 
87
 
88
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.8169398907103825
28
  - name: Recall
29
  type: recall
30
+ value: 0.8555078683834049
31
  - name: F1
32
  type: f1
33
+ value: 0.835779175401817
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9460251644266514
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2873
47
+ - Precision: 0.8169
48
+ - Recall: 0.8555
49
+ - F1: 0.8358
50
+ - Accuracy: 0.9460
51
 
52
  ## Model description
53
 
 
66
  ### Training hyperparameters
67
 
68
  The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 2
71
+ - eval_batch_size: 2
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
 
76
 
77
  ### Training results
78
 
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.2749 | 1.0 | 3597 | 0.2725 | 0.7744 | 0.7969 | 0.7855 | 0.9313 |
82
+ | 0.2085 | 2.0 | 7194 | 0.2446 | 0.7877 | 0.8308 | 0.8087 | 0.9397 |
83
+ | 0.1161 | 3.0 | 10791 | 0.2582 | 0.8029 | 0.8405 | 0.8212 | 0.9428 |
84
+ | 0.0932 | 4.0 | 14388 | 0.2836 | 0.8128 | 0.8526 | 0.8323 | 0.9448 |
85
+ | 0.0625 | 5.0 | 17985 | 0.2873 | 0.8169 | 0.8555 | 0.8358 | 0.9460 |
86
 
87
 
88
  ### Framework versions