Model save
Browse files- README.md +96 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: ufal/robeczech-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- cnec
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: CNEC_1_1_robeczech-base
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: cnec
|
21 |
+
type: cnec
|
22 |
+
config: default
|
23 |
+
split: validation
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8354960234407702
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8812362030905078
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8577567683712936
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9450064850843061
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# CNEC_1_1_robeczech-base
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2816
|
48 |
+
- Precision: 0.8355
|
49 |
+
- Recall: 0.8812
|
50 |
+
- F1: 0.8578
|
51 |
+
- Accuracy: 0.9450
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 32
|
72 |
+
- eval_batch_size: 32
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 80
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.7852 | 10.2 | 1500 | 0.6287 | 0.3577 | 0.2375 | 0.2855 | 0.8413 |
|
83 |
+
| 0.3806 | 20.41 | 3000 | 0.3455 | 0.7275 | 0.7779 | 0.7519 | 0.9240 |
|
84 |
+
| 0.2384 | 30.61 | 4500 | 0.2764 | 0.8139 | 0.8552 | 0.8340 | 0.9383 |
|
85 |
+
| 0.1722 | 40.82 | 6000 | 0.2640 | 0.8361 | 0.8693 | 0.8524 | 0.9450 |
|
86 |
+
| 0.1357 | 51.02 | 7500 | 0.2666 | 0.8362 | 0.8702 | 0.8529 | 0.9454 |
|
87 |
+
| 0.1115 | 61.22 | 9000 | 0.2697 | 0.8423 | 0.8751 | 0.8584 | 0.9457 |
|
88 |
+
| 0.098 | 71.43 | 10500 | 0.2816 | 0.8355 | 0.8812 | 0.8578 | 0.9450 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.36.2
|
94 |
+
- Pytorch 2.1.2+cu121
|
95 |
+
- Datasets 2.16.1
|
96 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 501826260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d4190bf3afc11805dd5840faa91d1349182949721c09e5c609e0dd62a74ee04
|
3 |
size 501826260
|