--- base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_ext_Czert-B-base-cased results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8383838383838383 - name: Recall type: recall value: 0.8872260823089257 - name: F1 type: f1 value: 0.8621137366917683 - name: Accuracy type: accuracy value: 0.9569787813899163 --- # CNEC_1_1_ext_Czert-B-base-cased This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co./UWB-AIR/Czert-B-base-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2513 - Precision: 0.8384 - Recall: 0.8872 - F1: 0.8621 - Accuracy: 0.9570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3012 | 3.42 | 500 | 0.1677 | 0.8115 | 0.8626 | 0.8363 | 0.9518 | | 0.1081 | 6.85 | 1000 | 0.1869 | 0.8218 | 0.8749 | 0.8475 | 0.9548 | | 0.0654 | 10.27 | 1500 | 0.2132 | 0.8311 | 0.8813 | 0.8555 | 0.9559 | | 0.0449 | 13.7 | 2000 | 0.2284 | 0.8296 | 0.8797 | 0.8540 | 0.9559 | | 0.0341 | 17.12 | 2500 | 0.2353 | 0.8348 | 0.8856 | 0.8594 | 0.9575 | | 0.0267 | 20.55 | 3000 | 0.2413 | 0.8397 | 0.8872 | 0.8628 | 0.9581 | | 0.0227 | 23.97 | 3500 | 0.2513 | 0.8384 | 0.8872 | 0.8621 | 0.9570 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0