File size: 1,202 Bytes
e35c998
7ef96cb
 
 
 
 
 
e35c998
7ef96cb
 
e35c998
7ef96cb
 
 
5c5ded8
e35c998
7ef96cb
 
 
e35c998
7ef96cb
 
 
e35c998
7ef96cb
 
a2b148e
7ef96cb
 
 
 
e35c998
7ef96cb
 
a2b148e
e35c998
7ef96cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
base_model: meta-llama/Meta-Llama-3.1-8B
language:
- en
- hi
datasets:
- student-abdullah/BigPharma_Generic_Q-A_Format_Augemented_Hinglish_Dataset
---
# LoRA Adapter Layers!
# Uploaded model

- **Developed by:** student-abdullah
- **Finetuned from model:** meta-llama/Meta-Llama-3.1-8B
- **Created on:** 27th September, 2024
- **Full model:** student-abdullah/Llama3.1_Medicine_Hinglish_Fine-Tuned_27-09_8bit_gguf

---
# Acknowledgement
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

---
# Model Description
This LoRA adapter layer model is fine-tuned from the meta-llama/Meta-Llama-3.1-8B base model to specialisation related to generic medications under the PMBJP scheme. The fine-tuning process included the following hyperparameters:

- Fine Tuning Template: Llama 3.1 Q&A
- Max Tokens: 512
- LoRA Alpha: 32
- LoRA Rank (r): 128
- Learning rate: 2e-4
- Gradient Accumulation Steps: 2
- Batch Size: 12

---
# Model Quantitative Performace
- Training Quantitative Loss: 0.1368 (at final 300th epoch)

---
# Limitations
- This is not a fully compiled model, rather just LoRA layers