Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 289.23 +/- 16.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d886c343ac0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d886c343b50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d886c343be0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d886c343c70>", "_build": "<function ActorCriticPolicy._build at 0x7d886c343d00>", "forward": "<function ActorCriticPolicy.forward at 0x7d886c343d90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d886c343e20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d886c343eb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d886c343f40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d886c34c040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d886c34c0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d886c34c160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d886c2fc480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723038494604042493, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNGC72+ork/i9/qvsuBLj7o5Ye5+rPfvQAAAAAAAAAAZsQaPLQaoT+1Oys9SYMevz2rED1oheC8AAAAAAAAAADNiOg7vYVZP8FYNj1tWkm/Pn8ZPWPBn7wAAAAAAAAAAM04r7sfPs67EiuCveGOAj1lviQ9yvfXvQAAgD8AAIA/M6SmvApECbvj5G+9I9JePdUsEDq2NnA7AACAPwAAgD8zAJk8ChmwP9pKYz6So5O+ylq0Oz7kaT0AAAAAAAAAAPM73721x7o+xeAzPjkCBr+gGaa9wkKQPQAAAAAAAAAAoI4vvqW98j6krqU+Tg0kvyXsBL1VCiM+AAAAAAAAAAAzp4q8ezqHujqLHzXe3pEwKAWbuoa7XLQAAIA/AACAP82EKjv2dDG61v8qtu9eNq6Ja8y6caxKNQAAgD8AAIA/E38kviDKoj44mK8+ly8IvzXnOb3uGzY+AAAAAAAAAABalBa+YhUnP3C/3Dx37Aa/XF1Qvq0iRLwAAAAAAAAAAJocpTyPuny6d9c7uyzVXbi4ISo7bj3bOQAAgD8AAIA/AFB7vKPgKD1AeKO8QnqzvkpWoL24SIS9AAAAAAAAAAAzZXw9gzSpP31NKj6neRu/nG+yPaXfrzoAAAAAAAAAAJpK1LyDjGw9IkBAPoZodb4wXrU9VvdkPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIQ1mz0HyGMAWyUS7SMAXSUR0CvSDffGdZrdX2UKGgGR0B0bhSzgMtsaAdLxWgIR0CvSHiHymQ9dX2UKGgGR0BwMIcdYGMXaAdLxGgIR0CvSIHCwbEQdX2UKGgGR0By6cqwyIpIaAdL32gIR0CvSMJlSS/1dX2UKGgGR0Bw+517pmmMaAdLsmgIR0CvSMx0EHMVdX2UKGgGR0BzFTVSXMQmaAdLx2gIR0CvSPcfV7QcdX2UKGgGR0ByttsP8Q7LaAdLtmgIR0CvSP3tBv74dX2UKGgGR0BywSfjCHh1aAdL0GgIR0CvSRSZrpJPdX2UKGgGR0Bu100YTCcgaAdLq2gIR0CvSRiDdxhldX2UKGgGR0BylAZOzposaAdLtGgIR0CvSVHim2srdX2UKGgGR0BxCFy0a6z3aAdLwGgIR0CvSXNutOmBdX2UKGgGR0By8nK/20zCaAdLw2gIR0CvSXyDyvs7dX2UKGgGR0BxumX4TK1YaAdLlWgIR0CvSaJtrKvFdX2UKGgGR0BzSVGI9C/oaAdLrWgIR0CvSa0rTYukdX2UKGgGR0BxLq3I+4b0aAdL12gIR0CvSbQ9JSR9dX2UKGgGR0BxbhCrtE5RaAdLrWgIR0CvScaPbO/tdX2UKGgGR0BxVRjd56dEaAdLuWgIR0CvScrpJPIodX2UKGgGR0BySJGc4HX3aAdLsWgIR0CvSitWluWKdX2UKGgGR0Bx6ZlNDc/MaAdLvGgIR0CvSj3yRSxadX2UKGgGR0Bx68rpaA4GaAdLv2gIR0CvSpDkdV/+dX2UKGgGR0Bw+fmwJPZaaAdLxmgIR0CvSpouGsV+dX2UKGgGR0BxrzzFuNxVaAdLs2gIR0CvSqPuw5eadX2UKGgGR0BxHY8r7O3VaAdLx2gIR0CvSvWiL2pRdX2UKGgGR0B0RmV/tpmFaAdL12gIR0CvSv8QAdXDdX2UKGgGR0BxcGyon8baaAdLzWgIR0CvSwllK9PDdX2UKGgGR0Bwv2ZBsyi3aAdLp2gIR0CvSw6dDpkgdX2UKGgGR0ByF2po9LYgaAdLx2gIR0CvSzhdld1MdX2UKGgGR0BxERVjqfOEaAdLrGgIR0CvS0vH1e0HdX2UKGgGR0Bw7rKMefZmaAdLuWgIR0CvS5qB/ZuidX2UKGgGR0Bzn4WcjJMhaAdLxmgIR0CvS6L5IpYtdX2UKGgGR0Bzc0cJdB0IaAdL0mgIR0CvS7hxgiNbdX2UKGgGR0BzofrQgLZ0aAdL12gIR0CvS+LxZuAJdX2UKGgGR0Byko8B+4LDaAdL/GgIR0CvS+2aMJhOdX2UKGgGR0ByLQgr6LwXaAdLyGgIR0CvTCWcBltkdX2UKGgGR0BxwHVUdaMaaAdLzWgIR0CvTETlcQiBdX2UKGgGR0ByF1YgaFVUaAdLtGgIR0CvTFp9qk/KdX2UKGgGR0Bx+b5HmRvFaAdLu2gIR0CvTHPddmg8dX2UKGgGR0Byp6rT6SDAaAdLw2gIR0CvTJEpRXOodX2UKGgGR0Bw8+5H3DekaAdLsWgIR0CvTK5gXuVpdX2UKGgGR0BynwNtqHoHaAdLsmgIR0CvTLpxvNu+dX2UKGgGR0ByzKifxtpFaAdLuWgIR0CvTNlD4QBgdX2UKGgGR0Byg2V2Rq46aAdLvWgIR0CvTOuVxCIDdX2UKGgGR0By+C8Yht+DaAdLs2gIR0CvTRBMJx//dX2UKGgGR0BxLzM6ij+KaAdLwmgIR0CvTSFpoK2KdX2UKGgGR0Bx9bLV4HHFaAdLq2gIR0CvTWOO801qdX2UKGgGR0ByuwekpI+XaAdLyGgIR0CvTZFbVz6rdX2UKGgGR0BwRKagElmfaAdLs2gIR0CvTaOCGvfTdX2UKGgGR0By6yk9ECvHaAdL2mgIR0CvTccm0E5idX2UKGgGR0B0LTCuU2UCaAdLv2gIR0CvTc2S2Yv4dX2UKGgGR0ByEpV94NZvaAdLuWgIR0CvTfi6H0sfdX2UKGgGR0BxszxYq5LAaAdLpWgIR0CvTfw+UyHmdX2UKGgGR0By3idtl7MQaAdLsWgIR0CvTgRJVbRndX2UKGgGR0BxdbGWD6FeaAdLtmgIR0CvTkBIvrWzdX2UKGgGR0BzNRDgIhQnaAdLv2gIR0CvTnioS+QEdX2UKGgGR0BxNAa2nbZfaAdLuGgIR0CvToU9QoCudX2UKGgGR0ByPVTzd1uBaAdLwmgIR0CvTq23KB/adX2UKGgGR0BzBtpGnXNDaAdLtGgIR0CvTrad+XqrdX2UKGgGR0Bwj7aCcwxnaAdLxGgIR0CvTs9rwe/6dX2UKGgGR0Bx51p8F6iTaAdLrmgIR0CvTs6/7BO6dX2UKGgGR0BGE9FF2FFlaAdLbWgIR0CvTum4RVZLdX2UKGgGR0Bzn7+MqBmPaAdLxWgIR0CvTxoxQBPsdX2UKGgGR0By2+t/4IrwaAdLrGgIR0CvT0vAGjbjdX2UKGgGR0BzSmbH6uW9aAdLo2gIR0CvT2pjMFEBdX2UKGgGR0ByRgXJo0yhaAdLjmgIR0CvT3Io3JgcdX2UKGgGR0BylA8EFGG3aAdL02gIR0CvT8FmFrVOdX2UKGgGR0BzAaEAYHgQaAdLumgIR0CvT9t7a7EpdX2UKGgGR0BzkjkOqebvaAdLvmgIR0CvT+L3TNMXdX2UKGgGR0B0HNGz8gp0aAdL/WgIR0CvT/BePaL5dX2UKGgGR0Bx+qXLNfPYaAdLqWgIR0CvUDkeZG8VdX2UKGgGR0Byr9QizLOiaAdLx2gIR0CvUEVrRBu5dX2UKGgGR0By+YVYZEUkaAdLtmgIR0CvUE/MnqmkdX2UKGgGR0BwUolMRHwxaAdLoWgIR0CvULN/FzdUdX2UKGgGR0BxzinQ6ZH/aAdLvGgIR0CvUMdFfAsTdX2UKGgGR0BzyJzDGcWkaAdLyWgIR0CvUM6oESuhdX2UKGgGR0BzjhWilBQfaAdL22gIR0CvUNwnQY1pdX2UKGgGR0BypR5mh/RWaAdL12gIR0CvUNtIkJKKdX2UKGgGR0BylnhHbypaaAdL7GgIR0CvUSpFTefqdX2UKGgGR0BzCeOn2qT9aAdLt2gIR0CvUT16E8JVdX2UKGgGR0Bx+I84gieNaAdLzGgIR0CvUVR2r4nGdX2UKGgGR0BxwUzImw7laAdLvGgIR0CvUZ1ktmL+dX2UKGgGR0Bvpq1XvH94aAdLuWgIR0CvUbW1MM7VdX2UKGgGR0BzsoliSaE0aAdLvmgIR0CvUbvX05EMdX2UKGgGR0B0FKsr/bTMaAdL52gIR0CvUbx9w3o+dX2UKGgGR0BzPQD4gzP9aAdL1WgIR0CvUgf7JnxsdX2UKGgGR0BvDHPgNwzdaAdLsGgIR0CvUgeKjzqbdX2UKGgGR0Bw69/OMVDbaAdLwmgIR0CvUioQ4CIUdX2UKGgGR0Bxwc8uBczJaAdLy2gIR0CvUjUsvqTsdX2UKGgGR0ByCULqlgtwaAdLsWgIR0CvUm8z67/XdX2UKGgGR0BF6VvVEuxsaAdLdGgIR0CvUnOH31zydX2UKGgGR0BxdcvTPSlWaAdLrmgIR0CvUorOqvNedX2UKGgGR0BygJSEUTL4aAdLxWgIR0CvUsIAn2IwdX2UKGgGR0BzEO9oN/e+aAdLy2gIR0CvUsP3BYV7dX2UKGgGR0ByHlKSPluFaAdLp2gIR0CvUtZSWJJodX2UKGgGR0BxFVg+hXbNaAdLtGgIR0CvUuGHYYixdX2UKGgGR0BykA7eVLSNaAdLomgIR0CvUyvldTo/dX2UKGgGR0Byia2phnanaAdL+mgIR0CvUzHHNorXdX2UKGgGR0BwdnP0I1LraAdLrWgIR0CvU2CL/CIldX2UKGgGR0BxCeN3np0PaAdLuWgIR0CvU3cRlHz6dX2UKGgGR0BxHFky1uzhaAdLzWgIR0CvU6vw3HaOdX2UKGgGR0BxcKhPCVKPaAdLsGgIR0CvU7DPv8ZUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 476, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d51923e2235b073b781664cbb0be04a22f05dc717d9196bde696dc81e124e4
|
3 |
+
size 147953
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d886c343ac0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d886c343b50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d886c343be0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d886c343c70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d886c343d00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d886c343d90>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d886c343e20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d886c343eb0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d886c343f40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d886c34c040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d886c34c0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d886c34c160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d886c2fc480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1723038494604042493,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNGC72+ork/i9/qvsuBLj7o5Ye5+rPfvQAAAAAAAAAAZsQaPLQaoT+1Oys9SYMevz2rED1oheC8AAAAAAAAAADNiOg7vYVZP8FYNj1tWkm/Pn8ZPWPBn7wAAAAAAAAAAM04r7sfPs67EiuCveGOAj1lviQ9yvfXvQAAgD8AAIA/M6SmvApECbvj5G+9I9JePdUsEDq2NnA7AACAPwAAgD8zAJk8ChmwP9pKYz6So5O+ylq0Oz7kaT0AAAAAAAAAAPM73721x7o+xeAzPjkCBr+gGaa9wkKQPQAAAAAAAAAAoI4vvqW98j6krqU+Tg0kvyXsBL1VCiM+AAAAAAAAAAAzp4q8ezqHujqLHzXe3pEwKAWbuoa7XLQAAIA/AACAP82EKjv2dDG61v8qtu9eNq6Ja8y6caxKNQAAgD8AAIA/E38kviDKoj44mK8+ly8IvzXnOb3uGzY+AAAAAAAAAABalBa+YhUnP3C/3Dx37Aa/XF1Qvq0iRLwAAAAAAAAAAJocpTyPuny6d9c7uyzVXbi4ISo7bj3bOQAAgD8AAIA/AFB7vKPgKD1AeKO8QnqzvkpWoL24SIS9AAAAAAAAAAAzZXw9gzSpP31NKj6neRu/nG+yPaXfrzoAAAAAAAAAAJpK1LyDjGw9IkBAPoZodb4wXrU9VvdkPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIQ1mz0HyGMAWyUS7SMAXSUR0CvSDffGdZrdX2UKGgGR0B0bhSzgMtsaAdLxWgIR0CvSHiHymQ9dX2UKGgGR0BwMIcdYGMXaAdLxGgIR0CvSIHCwbEQdX2UKGgGR0By6cqwyIpIaAdL32gIR0CvSMJlSS/1dX2UKGgGR0Bw+517pmmMaAdLsmgIR0CvSMx0EHMVdX2UKGgGR0BzFTVSXMQmaAdLx2gIR0CvSPcfV7QcdX2UKGgGR0ByttsP8Q7LaAdLtmgIR0CvSP3tBv74dX2UKGgGR0BywSfjCHh1aAdL0GgIR0CvSRSZrpJPdX2UKGgGR0Bu100YTCcgaAdLq2gIR0CvSRiDdxhldX2UKGgGR0BylAZOzposaAdLtGgIR0CvSVHim2srdX2UKGgGR0BxCFy0a6z3aAdLwGgIR0CvSXNutOmBdX2UKGgGR0By8nK/20zCaAdLw2gIR0CvSXyDyvs7dX2UKGgGR0BxumX4TK1YaAdLlWgIR0CvSaJtrKvFdX2UKGgGR0BzSVGI9C/oaAdLrWgIR0CvSa0rTYukdX2UKGgGR0BxLq3I+4b0aAdL12gIR0CvSbQ9JSR9dX2UKGgGR0BxbhCrtE5RaAdLrWgIR0CvScaPbO/tdX2UKGgGR0BxVRjd56dEaAdLuWgIR0CvScrpJPIodX2UKGgGR0BySJGc4HX3aAdLsWgIR0CvSitWluWKdX2UKGgGR0Bx6ZlNDc/MaAdLvGgIR0CvSj3yRSxadX2UKGgGR0Bx68rpaA4GaAdLv2gIR0CvSpDkdV/+dX2UKGgGR0Bw+fmwJPZaaAdLxmgIR0CvSpouGsV+dX2UKGgGR0BxrzzFuNxVaAdLs2gIR0CvSqPuw5eadX2UKGgGR0BxHY8r7O3VaAdLx2gIR0CvSvWiL2pRdX2UKGgGR0B0RmV/tpmFaAdL12gIR0CvSv8QAdXDdX2UKGgGR0BxcGyon8baaAdLzWgIR0CvSwllK9PDdX2UKGgGR0Bwv2ZBsyi3aAdLp2gIR0CvSw6dDpkgdX2UKGgGR0ByF2po9LYgaAdLx2gIR0CvSzhdld1MdX2UKGgGR0BxERVjqfOEaAdLrGgIR0CvS0vH1e0HdX2UKGgGR0Bw7rKMefZmaAdLuWgIR0CvS5qB/ZuidX2UKGgGR0Bzn4WcjJMhaAdLxmgIR0CvS6L5IpYtdX2UKGgGR0Bzc0cJdB0IaAdL0mgIR0CvS7hxgiNbdX2UKGgGR0BzofrQgLZ0aAdL12gIR0CvS+LxZuAJdX2UKGgGR0Byko8B+4LDaAdL/GgIR0CvS+2aMJhOdX2UKGgGR0ByLQgr6LwXaAdLyGgIR0CvTCWcBltkdX2UKGgGR0BxwHVUdaMaaAdLzWgIR0CvTETlcQiBdX2UKGgGR0ByF1YgaFVUaAdLtGgIR0CvTFp9qk/KdX2UKGgGR0Bx+b5HmRvFaAdLu2gIR0CvTHPddmg8dX2UKGgGR0Byp6rT6SDAaAdLw2gIR0CvTJEpRXOodX2UKGgGR0Bw8+5H3DekaAdLsWgIR0CvTK5gXuVpdX2UKGgGR0BynwNtqHoHaAdLsmgIR0CvTLpxvNu+dX2UKGgGR0ByzKifxtpFaAdLuWgIR0CvTNlD4QBgdX2UKGgGR0Byg2V2Rq46aAdLvWgIR0CvTOuVxCIDdX2UKGgGR0By+C8Yht+DaAdLs2gIR0CvTRBMJx//dX2UKGgGR0BxLzM6ij+KaAdLwmgIR0CvTSFpoK2KdX2UKGgGR0Bx9bLV4HHFaAdLq2gIR0CvTWOO801qdX2UKGgGR0ByuwekpI+XaAdLyGgIR0CvTZFbVz6rdX2UKGgGR0BwRKagElmfaAdLs2gIR0CvTaOCGvfTdX2UKGgGR0By6yk9ECvHaAdL2mgIR0CvTccm0E5idX2UKGgGR0B0LTCuU2UCaAdLv2gIR0CvTc2S2Yv4dX2UKGgGR0ByEpV94NZvaAdLuWgIR0CvTfi6H0sfdX2UKGgGR0BxszxYq5LAaAdLpWgIR0CvTfw+UyHmdX2UKGgGR0By3idtl7MQaAdLsWgIR0CvTgRJVbRndX2UKGgGR0BxdbGWD6FeaAdLtmgIR0CvTkBIvrWzdX2UKGgGR0BzNRDgIhQnaAdLv2gIR0CvTnioS+QEdX2UKGgGR0BxNAa2nbZfaAdLuGgIR0CvToU9QoCudX2UKGgGR0ByPVTzd1uBaAdLwmgIR0CvTq23KB/adX2UKGgGR0BzBtpGnXNDaAdLtGgIR0CvTrad+XqrdX2UKGgGR0Bwj7aCcwxnaAdLxGgIR0CvTs9rwe/6dX2UKGgGR0Bx51p8F6iTaAdLrmgIR0CvTs6/7BO6dX2UKGgGR0BGE9FF2FFlaAdLbWgIR0CvTum4RVZLdX2UKGgGR0Bzn7+MqBmPaAdLxWgIR0CvTxoxQBPsdX2UKGgGR0By2+t/4IrwaAdLrGgIR0CvT0vAGjbjdX2UKGgGR0BzSmbH6uW9aAdLo2gIR0CvT2pjMFEBdX2UKGgGR0ByRgXJo0yhaAdLjmgIR0CvT3Io3JgcdX2UKGgGR0BylA8EFGG3aAdL02gIR0CvT8FmFrVOdX2UKGgGR0BzAaEAYHgQaAdLumgIR0CvT9t7a7EpdX2UKGgGR0BzkjkOqebvaAdLvmgIR0CvT+L3TNMXdX2UKGgGR0B0HNGz8gp0aAdL/WgIR0CvT/BePaL5dX2UKGgGR0Bx+qXLNfPYaAdLqWgIR0CvUDkeZG8VdX2UKGgGR0Byr9QizLOiaAdLx2gIR0CvUEVrRBu5dX2UKGgGR0By+YVYZEUkaAdLtmgIR0CvUE/MnqmkdX2UKGgGR0BwUolMRHwxaAdLoWgIR0CvULN/FzdUdX2UKGgGR0BxzinQ6ZH/aAdLvGgIR0CvUMdFfAsTdX2UKGgGR0BzyJzDGcWkaAdLyWgIR0CvUM6oESuhdX2UKGgGR0BzjhWilBQfaAdL22gIR0CvUNwnQY1pdX2UKGgGR0BypR5mh/RWaAdL12gIR0CvUNtIkJKKdX2UKGgGR0BylnhHbypaaAdL7GgIR0CvUSpFTefqdX2UKGgGR0BzCeOn2qT9aAdLt2gIR0CvUT16E8JVdX2UKGgGR0Bx+I84gieNaAdLzGgIR0CvUVR2r4nGdX2UKGgGR0BxwUzImw7laAdLvGgIR0CvUZ1ktmL+dX2UKGgGR0Bvpq1XvH94aAdLuWgIR0CvUbW1MM7VdX2UKGgGR0BzsoliSaE0aAdLvmgIR0CvUbvX05EMdX2UKGgGR0B0FKsr/bTMaAdL52gIR0CvUbx9w3o+dX2UKGgGR0BzPQD4gzP9aAdL1WgIR0CvUgf7JnxsdX2UKGgGR0BvDHPgNwzdaAdLsGgIR0CvUgeKjzqbdX2UKGgGR0Bw69/OMVDbaAdLwmgIR0CvUioQ4CIUdX2UKGgGR0Bxwc8uBczJaAdLy2gIR0CvUjUsvqTsdX2UKGgGR0ByCULqlgtwaAdLsWgIR0CvUm8z67/XdX2UKGgGR0BF6VvVEuxsaAdLdGgIR0CvUnOH31zydX2UKGgGR0BxdcvTPSlWaAdLrmgIR0CvUorOqvNedX2UKGgGR0BygJSEUTL4aAdLxWgIR0CvUsIAn2IwdX2UKGgGR0BzEO9oN/e+aAdLy2gIR0CvUsP3BYV7dX2UKGgGR0ByHlKSPluFaAdLp2gIR0CvUtZSWJJodX2UKGgGR0BxFVg+hXbNaAdLtGgIR0CvUuGHYYixdX2UKGgGR0BykA7eVLSNaAdLomgIR0CvUyvldTo/dX2UKGgGR0Byia2phnanaAdL+mgIR0CvUzHHNorXdX2UKGgGR0BwdnP0I1LraAdLrWgIR0CvU2CL/CIldX2UKGgGR0BxCeN3np0PaAdLuWgIR0CvU3cRlHz6dX2UKGgGR0BxHFky1uzhaAdLzWgIR0CvU6vw3HaOdX2UKGgGR0BxcKhPCVKPaAdLsGgIR0CvU7DPv8ZUdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 476,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 4096,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf504e61f3d6c23f7e5c4402c5ac0d278657ddaac2c0b978b18c7331da5564aa
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df4218ae703ea85ba01ae61272592e2f2784486887660d970a112a689183f47a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (169 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 289.22672029409387, "std_reward": 16.505719799138284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:54:52.450933"}
|