docs: add instructions for running the model from transformers lib
Browse files
README.md
CHANGED
@@ -32,10 +32,22 @@ widget:
|
|
32 |
score: 0.9998
|
33 |
---
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
##
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
score: 0.9998
|
33 |
---
|
34 |
|
35 |
+
# BERTimbau for Sentiment Analysis of Glassdoor Reviews
|
36 |
|
37 |
+
## Introduction
|
38 |
+
This model fine-tunes [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)
|
39 |
+
for sentiment analysis of Glassdoor reviews about IT companies in Cuiabá.
|
40 |
|
41 |
+
## Dataset Information
|
42 |
+
The dataset used to train the model consists of 2,532 reviews sourced from Glassdoor.
|
43 |
|
44 |
+
### Example Usage
|
45 |
+
```python
|
46 |
+
from transformers import pipeline
|
47 |
+
|
48 |
+
pipe = pipeline("text-classification", model="stevillis/bertimbau-finetuned-glassdoor-reviews")
|
49 |
+
|
50 |
+
result = pipe("Empresa boa para trabalhar")
|
51 |
+
|
52 |
+
print(result) # Expected output: [{'label': 'positive', 'score': 0.9993522763252258}]
|
53 |
+
```
|