File size: 3,066 Bytes
8970675 837f85f 8970675 a25de57 04212e5 8970675 04212e5 a25de57 04212e5 a25de57 04212e5 a25de57 04212e5 a25de57 8970675 b61886f cf9972a b3bf2ef 6a2ea8d a8cef4b 8970675 b3bf2ef 1c73e76 46ab193 a25de57 b3bf2ef 1c73e76 b3bf2ef a25de57 b3bf2ef a25de57 b3bf2ef cdac563 a25de57 b3bf2ef a25de57 f510aad 8970675 a25de57 8970675 b3bf2ef 46ab193 8970675 b3bf2ef a25de57 b61886f fac395b b61886f 04212e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
base_model: shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat
datasets:
- Minami-su/toxic-sft-zh
- llm-wizard/alpaca-gpt4-data-zh
- stephenlzc/stf-alpaca
language:
- zh
license: mit
pipeline_tag: text-generation
tags:
- text-generation-inference
- code
- unsloth
- uncensored
- finetune
task_categories:
- conversational
widget:
- text: >-
Is this review positive or negative? Review: Best cast iron skillet you will
ever buy.
example_title: Sentiment analysis
- text: >-
Barack Obama nominated Hilary Clinton as his secretary of state on Monday.
He chose her because she had ...
example_title: Coreference resolution
- text: >-
On a shelf, there are five books: a gray book, a red book, a purple book, a
blue book, and a black book ...
example_title: Logic puzzles
- text: >-
The two men running to become New York City's next mayor will face off in
their first debate Wednesday night ...
example_title: Reading comprehension
---
## Model Details
### Model Description
- Using **shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat** as base model, and finetune the dataset as mentioned via **[unsloth](https://github.com/unslothai/unsloth)**. Makes the model uncensored.
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
### Training Code
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1K9stY8LMVcySG0jDMYZdWQCFPfoDFBL-?usp=sharing)
### Training Procedure Raw Files
- ALL the procedure are training on **[Vast.ai](https://cloud.vast.ai/?ref_id=138637)**
- **Hardware in Vast.ai**:
- **GPU**: 1x A100 SXM4 80GB
- **CPU**: AMD EPYC 7513 32-Core Processor
- **RAM**: 129 GB
- **Disk Space To Allocate**:>150GB
- **Docker Image**: pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel
- Download the **[ipynb file](https://huggingface.co./stephenlzc/Mistral-7B-v0.3-Chinese-Chat-uncensored/blob/main/Mistral-7B-v0.3-Chinese-Chat-uncensored.ipynb)**.
### Training Data
- **Base Model**
- [shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat](https://huggingface.co./shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat)
- **Dataset**
- [Minami-su/toxic-sft-zh](https://huggingface.co./datasets/Minami-su/toxic-sft-zh)
- [llm-wizard/alpaca-gpt4-data-zh](https://huggingface.co./datasets/llm-wizard/alpaca-gpt4-data-zh)
- [stephenlzc/stf-alpaca](https://huggingface.co./datasets/stephenlzc/stf-alpaca)
### Usage
```python
from transformers import pipeline
qa_model = pipeline("question-answering", model='stephenlzc/Mistral-7B-v0.3-Chinese-Chat-uncensored')
question = "How to make girlfreind laugh? please answer in Chinese."
qa_model(question = question)
```
###
[<img src="https://img.buymeacoffee.com/button-api/?text=Buy me a coffee&emoji=&slug=chicongliau&button_colour=40DCA5&font_colour=ffffff&font_family=Poppins&outline_colour=000000&coffee_colour=FFDD00" width="200"/>](https://www.buymeacoffee.com/chicongliau) |