steja commited on
Commit
d5565f2
·
1 Parent(s): ad99af2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: whisper-large-shona
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # whisper-large-shona
16
+
17
+ This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9189
20
+ - Wer: 37.5
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 4
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 64
47
+ - total_eval_batch_size: 64
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 100
51
+ - training_steps: 1000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
57
+ | 0.0005 | 41.64 | 500 | 0.8784 | 37.525 |
58
+ | 0.0003 | 83.32 | 1000 | 0.9189 | 37.5 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.25.1
64
+ - Pytorch 1.13.0+cu117
65
+ - Datasets 2.7.1
66
+ - Tokenizers 0.13.2