Upload ./training.log with huggingface_hub
Browse files- training.log +244 -0
training.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 21:36:16,098 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 21:36:16,099 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 21:36:16,099 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 21:36:16,099 MultiCorpus: 1085 train + 148 dev + 364 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
|
53 |
+
2023-10-25 21:36:16,099 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 21:36:16,099 Train: 1085 sentences
|
55 |
+
2023-10-25 21:36:16,099 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 21:36:16,100 Training Params:
|
58 |
+
2023-10-25 21:36:16,100 - learning_rate: "3e-05"
|
59 |
+
2023-10-25 21:36:16,100 - mini_batch_size: "4"
|
60 |
+
2023-10-25 21:36:16,100 - max_epochs: "10"
|
61 |
+
2023-10-25 21:36:16,100 - shuffle: "True"
|
62 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 21:36:16,100 Plugins:
|
64 |
+
2023-10-25 21:36:16,100 - TensorboardLogger
|
65 |
+
2023-10-25 21:36:16,100 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 21:36:16,100 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 21:36:16,100 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 21:36:16,100 Computation:
|
71 |
+
2023-10-25 21:36:16,100 - compute on device: cuda:0
|
72 |
+
2023-10-25 21:36:16,100 - embedding storage: none
|
73 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 21:36:16,100 Model training base path: "hmbench-newseye/sv-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
75 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 21:36:16,100 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 21:36:16,100 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 21:36:17,592 epoch 1 - iter 27/272 - loss 2.65474957 - time (sec): 1.49 - samples/sec: 3443.20 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-25 21:36:19,071 epoch 1 - iter 54/272 - loss 1.95673918 - time (sec): 2.97 - samples/sec: 3496.32 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-25 21:36:20,628 epoch 1 - iter 81/272 - loss 1.46307628 - time (sec): 4.53 - samples/sec: 3568.70 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-25 21:36:22,257 epoch 1 - iter 108/272 - loss 1.21997753 - time (sec): 6.16 - samples/sec: 3569.29 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-25 21:36:23,862 epoch 1 - iter 135/272 - loss 1.06410884 - time (sec): 7.76 - samples/sec: 3468.98 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-25 21:36:25,355 epoch 1 - iter 162/272 - loss 0.94145184 - time (sec): 9.25 - samples/sec: 3461.97 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-25 21:36:26,744 epoch 1 - iter 189/272 - loss 0.84157685 - time (sec): 10.64 - samples/sec: 3530.87 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-25 21:36:28,108 epoch 1 - iter 216/272 - loss 0.77482516 - time (sec): 12.01 - samples/sec: 3510.36 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-25 21:36:29,524 epoch 1 - iter 243/272 - loss 0.70539388 - time (sec): 13.42 - samples/sec: 3558.79 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-25 21:36:30,876 epoch 1 - iter 270/272 - loss 0.66693078 - time (sec): 14.77 - samples/sec: 3501.73 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-25 21:36:30,968 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 21:36:30,969 EPOCH 1 done: loss 0.6644 - lr: 0.000030
|
90 |
+
2023-10-25 21:36:32,031 DEV : loss 0.13923215866088867 - f1-score (micro avg) 0.6887
|
91 |
+
2023-10-25 21:36:32,037 saving best model
|
92 |
+
2023-10-25 21:36:32,530 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 21:36:33,922 epoch 2 - iter 27/272 - loss 0.13712817 - time (sec): 1.39 - samples/sec: 3749.80 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-25 21:36:35,305 epoch 2 - iter 54/272 - loss 0.14265572 - time (sec): 2.77 - samples/sec: 3871.37 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-25 21:36:36,738 epoch 2 - iter 81/272 - loss 0.13770316 - time (sec): 4.21 - samples/sec: 3643.51 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-25 21:36:38,169 epoch 2 - iter 108/272 - loss 0.13487633 - time (sec): 5.64 - samples/sec: 3586.44 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-25 21:36:39,640 epoch 2 - iter 135/272 - loss 0.12662835 - time (sec): 7.11 - samples/sec: 3596.54 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-25 21:36:41,053 epoch 2 - iter 162/272 - loss 0.13170245 - time (sec): 8.52 - samples/sec: 3604.95 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-25 21:36:42,545 epoch 2 - iter 189/272 - loss 0.13769892 - time (sec): 10.01 - samples/sec: 3644.20 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-25 21:36:43,931 epoch 2 - iter 216/272 - loss 0.13518913 - time (sec): 11.40 - samples/sec: 3583.68 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-25 21:36:45,316 epoch 2 - iter 243/272 - loss 0.13506088 - time (sec): 12.78 - samples/sec: 3645.16 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-25 21:36:46,650 epoch 2 - iter 270/272 - loss 0.13127930 - time (sec): 14.12 - samples/sec: 3651.29 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-25 21:36:46,768 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 21:36:46,768 EPOCH 2 done: loss 0.1314 - lr: 0.000027
|
105 |
+
2023-10-25 21:36:48,045 DEV : loss 0.10660745203495026 - f1-score (micro avg) 0.7532
|
106 |
+
2023-10-25 21:36:48,051 saving best model
|
107 |
+
2023-10-25 21:36:48,725 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 21:36:50,078 epoch 3 - iter 27/272 - loss 0.06727833 - time (sec): 1.35 - samples/sec: 3224.34 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-25 21:36:51,520 epoch 3 - iter 54/272 - loss 0.07452004 - time (sec): 2.79 - samples/sec: 3379.71 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-25 21:36:52,983 epoch 3 - iter 81/272 - loss 0.06497320 - time (sec): 4.26 - samples/sec: 3522.04 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-25 21:36:54,367 epoch 3 - iter 108/272 - loss 0.07157426 - time (sec): 5.64 - samples/sec: 3448.54 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-25 21:36:55,856 epoch 3 - iter 135/272 - loss 0.07014469 - time (sec): 7.13 - samples/sec: 3580.67 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-25 21:36:57,282 epoch 3 - iter 162/272 - loss 0.07193507 - time (sec): 8.56 - samples/sec: 3659.46 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-25 21:36:58,714 epoch 3 - iter 189/272 - loss 0.07142812 - time (sec): 9.99 - samples/sec: 3694.40 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-25 21:37:00,075 epoch 3 - iter 216/272 - loss 0.07085430 - time (sec): 11.35 - samples/sec: 3651.23 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-25 21:37:01,431 epoch 3 - iter 243/272 - loss 0.07029081 - time (sec): 12.70 - samples/sec: 3631.45 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-25 21:37:02,883 epoch 3 - iter 270/272 - loss 0.06959342 - time (sec): 14.16 - samples/sec: 3643.29 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-25 21:37:02,985 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 21:37:02,986 EPOCH 3 done: loss 0.0701 - lr: 0.000023
|
120 |
+
2023-10-25 21:37:04,144 DEV : loss 0.10616882890462875 - f1-score (micro avg) 0.7942
|
121 |
+
2023-10-25 21:37:04,150 saving best model
|
122 |
+
2023-10-25 21:37:04,868 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 21:37:06,327 epoch 4 - iter 27/272 - loss 0.02755718 - time (sec): 1.46 - samples/sec: 3921.24 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-25 21:37:07,756 epoch 4 - iter 54/272 - loss 0.03125274 - time (sec): 2.89 - samples/sec: 3970.57 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-25 21:37:09,238 epoch 4 - iter 81/272 - loss 0.03309291 - time (sec): 4.37 - samples/sec: 3920.29 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-25 21:37:10,671 epoch 4 - iter 108/272 - loss 0.03220408 - time (sec): 5.80 - samples/sec: 3760.69 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-25 21:37:12,054 epoch 4 - iter 135/272 - loss 0.03239834 - time (sec): 7.18 - samples/sec: 3602.46 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-25 21:37:13,609 epoch 4 - iter 162/272 - loss 0.03733691 - time (sec): 8.74 - samples/sec: 3535.60 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-25 21:37:15,194 epoch 4 - iter 189/272 - loss 0.03815361 - time (sec): 10.32 - samples/sec: 3611.73 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-25 21:37:16,627 epoch 4 - iter 216/272 - loss 0.03849085 - time (sec): 11.76 - samples/sec: 3579.76 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-25 21:37:18,099 epoch 4 - iter 243/272 - loss 0.03882976 - time (sec): 13.23 - samples/sec: 3521.96 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-25 21:37:19,590 epoch 4 - iter 270/272 - loss 0.03977053 - time (sec): 14.72 - samples/sec: 3500.83 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-25 21:37:19,696 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 21:37:19,696 EPOCH 4 done: loss 0.0394 - lr: 0.000020
|
135 |
+
2023-10-25 21:37:21,213 DEV : loss 0.13888561725616455 - f1-score (micro avg) 0.8022
|
136 |
+
2023-10-25 21:37:21,219 saving best model
|
137 |
+
2023-10-25 21:37:21,909 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-25 21:37:23,361 epoch 5 - iter 27/272 - loss 0.01745196 - time (sec): 1.45 - samples/sec: 3573.87 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-25 21:37:24,832 epoch 5 - iter 54/272 - loss 0.01893335 - time (sec): 2.92 - samples/sec: 3355.12 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-25 21:37:26,256 epoch 5 - iter 81/272 - loss 0.02213397 - time (sec): 4.34 - samples/sec: 3300.38 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-25 21:37:27,692 epoch 5 - iter 108/272 - loss 0.02108827 - time (sec): 5.78 - samples/sec: 3388.76 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-25 21:37:29,117 epoch 5 - iter 135/272 - loss 0.02358492 - time (sec): 7.21 - samples/sec: 3392.69 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-25 21:37:30,670 epoch 5 - iter 162/272 - loss 0.02172849 - time (sec): 8.76 - samples/sec: 3489.99 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-25 21:37:32,231 epoch 5 - iter 189/272 - loss 0.02333344 - time (sec): 10.32 - samples/sec: 3527.51 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-25 21:37:33,724 epoch 5 - iter 216/272 - loss 0.02626849 - time (sec): 11.81 - samples/sec: 3528.15 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-25 21:37:35,167 epoch 5 - iter 243/272 - loss 0.02839398 - time (sec): 13.26 - samples/sec: 3486.38 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-25 21:37:36,681 epoch 5 - iter 270/272 - loss 0.02784007 - time (sec): 14.77 - samples/sec: 3508.99 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-25 21:37:36,786 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-25 21:37:36,786 EPOCH 5 done: loss 0.0278 - lr: 0.000017
|
150 |
+
2023-10-25 21:37:37,960 DEV : loss 0.15720747411251068 - f1-score (micro avg) 0.8303
|
151 |
+
2023-10-25 21:37:37,967 saving best model
|
152 |
+
2023-10-25 21:37:38,672 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-25 21:37:40,208 epoch 6 - iter 27/272 - loss 0.02100579 - time (sec): 1.53 - samples/sec: 3741.48 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-25 21:37:41,702 epoch 6 - iter 54/272 - loss 0.02444168 - time (sec): 3.03 - samples/sec: 3732.58 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-25 21:37:43,184 epoch 6 - iter 81/272 - loss 0.02024815 - time (sec): 4.51 - samples/sec: 3562.71 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-25 21:37:44,712 epoch 6 - iter 108/272 - loss 0.02102848 - time (sec): 6.04 - samples/sec: 3469.50 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-25 21:37:46,104 epoch 6 - iter 135/272 - loss 0.02392105 - time (sec): 7.43 - samples/sec: 3437.82 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-25 21:37:47,572 epoch 6 - iter 162/272 - loss 0.02188491 - time (sec): 8.90 - samples/sec: 3479.00 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-25 21:37:49,043 epoch 6 - iter 189/272 - loss 0.02382525 - time (sec): 10.37 - samples/sec: 3558.80 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-25 21:37:50,545 epoch 6 - iter 216/272 - loss 0.02244042 - time (sec): 11.87 - samples/sec: 3553.28 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-25 21:37:52,020 epoch 6 - iter 243/272 - loss 0.02270981 - time (sec): 13.34 - samples/sec: 3529.79 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-25 21:37:53,451 epoch 6 - iter 270/272 - loss 0.02162726 - time (sec): 14.77 - samples/sec: 3500.62 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-25 21:37:53,556 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-25 21:37:53,556 EPOCH 6 done: loss 0.0215 - lr: 0.000013
|
165 |
+
2023-10-25 21:37:54,933 DEV : loss 0.15974003076553345 - f1-score (micro avg) 0.8095
|
166 |
+
2023-10-25 21:37:54,939 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-25 21:37:56,442 epoch 7 - iter 27/272 - loss 0.01980615 - time (sec): 1.50 - samples/sec: 2945.32 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2023-10-25 21:37:57,960 epoch 7 - iter 54/272 - loss 0.01724369 - time (sec): 3.02 - samples/sec: 3022.59 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-25 21:37:59,454 epoch 7 - iter 81/272 - loss 0.01339852 - time (sec): 4.51 - samples/sec: 3129.68 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-25 21:38:01,009 epoch 7 - iter 108/272 - loss 0.01352837 - time (sec): 6.07 - samples/sec: 3240.56 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-25 21:38:02,460 epoch 7 - iter 135/272 - loss 0.01334570 - time (sec): 7.52 - samples/sec: 3253.53 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-25 21:38:03,936 epoch 7 - iter 162/272 - loss 0.01470991 - time (sec): 9.00 - samples/sec: 3320.79 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-25 21:38:05,467 epoch 7 - iter 189/272 - loss 0.01466955 - time (sec): 10.53 - samples/sec: 3377.68 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-25 21:38:06,964 epoch 7 - iter 216/272 - loss 0.01430832 - time (sec): 12.02 - samples/sec: 3355.20 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-25 21:38:08,466 epoch 7 - iter 243/272 - loss 0.01369448 - time (sec): 13.53 - samples/sec: 3400.77 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-10-25 21:38:09,982 epoch 7 - iter 270/272 - loss 0.01347495 - time (sec): 15.04 - samples/sec: 3427.29 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-25 21:38:10,095 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-25 21:38:10,096 EPOCH 7 done: loss 0.0134 - lr: 0.000010
|
179 |
+
2023-10-25 21:38:11,350 DEV : loss 0.166848286986351 - f1-score (micro avg) 0.8259
|
180 |
+
2023-10-25 21:38:11,356 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-25 21:38:12,831 epoch 8 - iter 27/272 - loss 0.00458623 - time (sec): 1.47 - samples/sec: 3264.34 - lr: 0.000010 - momentum: 0.000000
|
182 |
+
2023-10-25 21:38:14,339 epoch 8 - iter 54/272 - loss 0.00846915 - time (sec): 2.98 - samples/sec: 3473.62 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-25 21:38:15,847 epoch 8 - iter 81/272 - loss 0.01019042 - time (sec): 4.49 - samples/sec: 3586.96 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-25 21:38:17,381 epoch 8 - iter 108/272 - loss 0.01175752 - time (sec): 6.02 - samples/sec: 3538.21 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-25 21:38:18,883 epoch 8 - iter 135/272 - loss 0.01022689 - time (sec): 7.53 - samples/sec: 3419.07 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-25 21:38:20,751 epoch 8 - iter 162/272 - loss 0.01201647 - time (sec): 9.39 - samples/sec: 3359.94 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-10-25 21:38:22,326 epoch 8 - iter 189/272 - loss 0.01181327 - time (sec): 10.97 - samples/sec: 3333.47 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-25 21:38:23,890 epoch 8 - iter 216/272 - loss 0.01211581 - time (sec): 12.53 - samples/sec: 3352.87 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-25 21:38:25,605 epoch 8 - iter 243/272 - loss 0.01103217 - time (sec): 14.25 - samples/sec: 3271.14 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-10-25 21:38:27,138 epoch 8 - iter 270/272 - loss 0.01086758 - time (sec): 15.78 - samples/sec: 3282.26 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-25 21:38:27,242 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-25 21:38:27,242 EPOCH 8 done: loss 0.0108 - lr: 0.000007
|
193 |
+
2023-10-25 21:38:28,449 DEV : loss 0.17616702616214752 - f1-score (micro avg) 0.8349
|
194 |
+
2023-10-25 21:38:28,455 saving best model
|
195 |
+
2023-10-25 21:38:29,166 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-25 21:38:30,600 epoch 9 - iter 27/272 - loss 0.00211304 - time (sec): 1.43 - samples/sec: 3416.58 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-25 21:38:32,009 epoch 9 - iter 54/272 - loss 0.00398583 - time (sec): 2.84 - samples/sec: 3137.80 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-25 21:38:33,429 epoch 9 - iter 81/272 - loss 0.00422015 - time (sec): 4.26 - samples/sec: 3363.98 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-25 21:38:34,839 epoch 9 - iter 108/272 - loss 0.00414286 - time (sec): 5.67 - samples/sec: 3383.74 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-25 21:38:36,374 epoch 9 - iter 135/272 - loss 0.00508803 - time (sec): 7.20 - samples/sec: 3433.77 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-25 21:38:37,878 epoch 9 - iter 162/272 - loss 0.00567152 - time (sec): 8.71 - samples/sec: 3573.28 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-25 21:38:39,332 epoch 9 - iter 189/272 - loss 0.00571780 - time (sec): 10.16 - samples/sec: 3614.06 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-25 21:38:40,804 epoch 9 - iter 216/272 - loss 0.00674595 - time (sec): 11.63 - samples/sec: 3651.36 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-10-25 21:38:42,221 epoch 9 - iter 243/272 - loss 0.00841894 - time (sec): 13.05 - samples/sec: 3679.51 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-25 21:38:43,518 epoch 9 - iter 270/272 - loss 0.00848400 - time (sec): 14.35 - samples/sec: 3599.69 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-10-25 21:38:43,617 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-25 21:38:43,617 EPOCH 9 done: loss 0.0084 - lr: 0.000003
|
208 |
+
2023-10-25 21:38:44,853 DEV : loss 0.18914948403835297 - f1-score (micro avg) 0.8343
|
209 |
+
2023-10-25 21:38:44,859 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-25 21:38:46,264 epoch 10 - iter 27/272 - loss 0.00970450 - time (sec): 1.40 - samples/sec: 3397.91 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-25 21:38:47,640 epoch 10 - iter 54/272 - loss 0.00836191 - time (sec): 2.78 - samples/sec: 3602.53 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-25 21:38:49,022 epoch 10 - iter 81/272 - loss 0.00803990 - time (sec): 4.16 - samples/sec: 3771.60 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-25 21:38:50,383 epoch 10 - iter 108/272 - loss 0.00794155 - time (sec): 5.52 - samples/sec: 3606.04 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-25 21:38:51,751 epoch 10 - iter 135/272 - loss 0.00705511 - time (sec): 6.89 - samples/sec: 3645.93 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-25 21:38:53,162 epoch 10 - iter 162/272 - loss 0.00622416 - time (sec): 8.30 - samples/sec: 3632.63 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-25 21:38:54,557 epoch 10 - iter 189/272 - loss 0.00552767 - time (sec): 9.70 - samples/sec: 3660.02 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-25 21:38:56,071 epoch 10 - iter 216/272 - loss 0.00549638 - time (sec): 11.21 - samples/sec: 3661.33 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-25 21:38:57,521 epoch 10 - iter 243/272 - loss 0.00587848 - time (sec): 12.66 - samples/sec: 3653.32 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-25 21:38:58,984 epoch 10 - iter 270/272 - loss 0.00686666 - time (sec): 14.12 - samples/sec: 3675.73 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-25 21:38:59,080 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-25 21:38:59,080 EPOCH 10 done: loss 0.0069 - lr: 0.000000
|
222 |
+
2023-10-25 21:39:00,327 DEV : loss 0.1866416335105896 - f1-score (micro avg) 0.8296
|
223 |
+
2023-10-25 21:39:00,870 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-25 21:39:00,871 Loading model from best epoch ...
|
225 |
+
2023-10-25 21:39:02,819 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
|
226 |
+
2023-10-25 21:39:05,281
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.7832
|
229 |
+
- F-score (macro) 0.7318
|
230 |
+
- Accuracy 0.66
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
LOC 0.8277 0.8622 0.8446 312
|
236 |
+
PER 0.6654 0.8702 0.7542 208
|
237 |
+
ORG 0.5778 0.4727 0.5200 55
|
238 |
+
HumanProd 0.7600 0.8636 0.8085 22
|
239 |
+
|
240 |
+
micro avg 0.7421 0.8291 0.7832 597
|
241 |
+
macro avg 0.7077 0.7672 0.7318 597
|
242 |
+
weighted avg 0.7456 0.8291 0.7818 597
|
243 |
+
|
244 |
+
2023-10-25 21:39:05,281 ----------------------------------------------------------------------------------------------------
|