stefan-it's picture
Upload folder using huggingface_hub
9a90149
2023-10-17 13:24:18,291 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): ElectraModel(
(embeddings): ElectraEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): ElectraEncoder(
(layer): ModuleList(
(0-11): 12 x ElectraLayer(
(attention): ElectraAttention(
(self): ElectraSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): ElectraSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): ElectraIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ElectraOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Train: 7142 sentences
2023-10-17 13:24:18,292 (train_with_dev=False, train_with_test=False)
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Training Params:
2023-10-17 13:24:18,292 - learning_rate: "5e-05"
2023-10-17 13:24:18,292 - mini_batch_size: "8"
2023-10-17 13:24:18,292 - max_epochs: "10"
2023-10-17 13:24:18,292 - shuffle: "True"
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Plugins:
2023-10-17 13:24:18,292 - TensorboardLogger
2023-10-17 13:24:18,292 - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 13:24:18,292 - metric: "('micro avg', 'f1-score')"
2023-10-17 13:24:18,292 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,292 Computation:
2023-10-17 13:24:18,292 - compute on device: cuda:0
2023-10-17 13:24:18,293 - embedding storage: none
2023-10-17 13:24:18,293 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,293 Model training base path: "hmbench-newseye/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 13:24:18,293 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,293 ----------------------------------------------------------------------------------------------------
2023-10-17 13:24:18,293 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 13:24:24,918 epoch 1 - iter 89/893 - loss 2.75866120 - time (sec): 6.62 - samples/sec: 3473.86 - lr: 0.000005 - momentum: 0.000000
2023-10-17 13:24:32,428 epoch 1 - iter 178/893 - loss 1.58176161 - time (sec): 14.13 - samples/sec: 3513.32 - lr: 0.000010 - momentum: 0.000000
2023-10-17 13:24:39,299 epoch 1 - iter 267/893 - loss 1.18997196 - time (sec): 21.01 - samples/sec: 3548.14 - lr: 0.000015 - momentum: 0.000000
2023-10-17 13:24:46,281 epoch 1 - iter 356/893 - loss 0.95916455 - time (sec): 27.99 - samples/sec: 3612.14 - lr: 0.000020 - momentum: 0.000000
2023-10-17 13:24:52,902 epoch 1 - iter 445/893 - loss 0.81844743 - time (sec): 34.61 - samples/sec: 3606.55 - lr: 0.000025 - momentum: 0.000000
2023-10-17 13:24:59,404 epoch 1 - iter 534/893 - loss 0.72551967 - time (sec): 41.11 - samples/sec: 3603.88 - lr: 0.000030 - momentum: 0.000000
2023-10-17 13:25:06,164 epoch 1 - iter 623/893 - loss 0.64807688 - time (sec): 47.87 - samples/sec: 3609.93 - lr: 0.000035 - momentum: 0.000000
2023-10-17 13:25:13,480 epoch 1 - iter 712/893 - loss 0.58175950 - time (sec): 55.19 - samples/sec: 3610.39 - lr: 0.000040 - momentum: 0.000000
2023-10-17 13:25:20,051 epoch 1 - iter 801/893 - loss 0.53640711 - time (sec): 61.76 - samples/sec: 3608.51 - lr: 0.000045 - momentum: 0.000000
2023-10-17 13:25:26,675 epoch 1 - iter 890/893 - loss 0.49591919 - time (sec): 68.38 - samples/sec: 3629.34 - lr: 0.000050 - momentum: 0.000000
2023-10-17 13:25:26,847 ----------------------------------------------------------------------------------------------------
2023-10-17 13:25:26,847 EPOCH 1 done: loss 0.4953 - lr: 0.000050
2023-10-17 13:25:30,025 DEV : loss 0.13788369297981262 - f1-score (micro avg) 0.7176
2023-10-17 13:25:30,041 saving best model
2023-10-17 13:25:30,417 ----------------------------------------------------------------------------------------------------
2023-10-17 13:25:37,070 epoch 2 - iter 89/893 - loss 0.12012810 - time (sec): 6.65 - samples/sec: 3655.67 - lr: 0.000049 - momentum: 0.000000
2023-10-17 13:25:43,766 epoch 2 - iter 178/893 - loss 0.11907211 - time (sec): 13.35 - samples/sec: 3598.83 - lr: 0.000049 - momentum: 0.000000
2023-10-17 13:25:50,441 epoch 2 - iter 267/893 - loss 0.11594867 - time (sec): 20.02 - samples/sec: 3490.94 - lr: 0.000048 - momentum: 0.000000
2023-10-17 13:25:57,844 epoch 2 - iter 356/893 - loss 0.11429689 - time (sec): 27.43 - samples/sec: 3466.61 - lr: 0.000048 - momentum: 0.000000
2023-10-17 13:26:04,965 epoch 2 - iter 445/893 - loss 0.11235555 - time (sec): 34.55 - samples/sec: 3515.49 - lr: 0.000047 - momentum: 0.000000
2023-10-17 13:26:12,139 epoch 2 - iter 534/893 - loss 0.11174439 - time (sec): 41.72 - samples/sec: 3532.14 - lr: 0.000047 - momentum: 0.000000
2023-10-17 13:26:19,555 epoch 2 - iter 623/893 - loss 0.10874895 - time (sec): 49.14 - samples/sec: 3559.42 - lr: 0.000046 - momentum: 0.000000
2023-10-17 13:26:26,357 epoch 2 - iter 712/893 - loss 0.11039562 - time (sec): 55.94 - samples/sec: 3574.71 - lr: 0.000046 - momentum: 0.000000
2023-10-17 13:26:33,252 epoch 2 - iter 801/893 - loss 0.10946145 - time (sec): 62.83 - samples/sec: 3571.72 - lr: 0.000045 - momentum: 0.000000
2023-10-17 13:26:40,028 epoch 2 - iter 890/893 - loss 0.10884277 - time (sec): 69.61 - samples/sec: 3564.35 - lr: 0.000044 - momentum: 0.000000
2023-10-17 13:26:40,230 ----------------------------------------------------------------------------------------------------
2023-10-17 13:26:40,230 EPOCH 2 done: loss 0.1088 - lr: 0.000044
2023-10-17 13:26:44,981 DEV : loss 0.11145459860563278 - f1-score (micro avg) 0.7591
2023-10-17 13:26:44,997 saving best model
2023-10-17 13:26:45,466 ----------------------------------------------------------------------------------------------------
2023-10-17 13:26:52,240 epoch 3 - iter 89/893 - loss 0.06579565 - time (sec): 6.77 - samples/sec: 3623.69 - lr: 0.000044 - momentum: 0.000000
2023-10-17 13:26:59,465 epoch 3 - iter 178/893 - loss 0.06780791 - time (sec): 14.00 - samples/sec: 3529.80 - lr: 0.000043 - momentum: 0.000000
2023-10-17 13:27:06,519 epoch 3 - iter 267/893 - loss 0.06511173 - time (sec): 21.05 - samples/sec: 3546.04 - lr: 0.000043 - momentum: 0.000000
2023-10-17 13:27:13,320 epoch 3 - iter 356/893 - loss 0.06708858 - time (sec): 27.85 - samples/sec: 3533.37 - lr: 0.000042 - momentum: 0.000000
2023-10-17 13:27:20,468 epoch 3 - iter 445/893 - loss 0.06704685 - time (sec): 35.00 - samples/sec: 3543.72 - lr: 0.000042 - momentum: 0.000000
2023-10-17 13:27:27,155 epoch 3 - iter 534/893 - loss 0.06913881 - time (sec): 41.69 - samples/sec: 3549.64 - lr: 0.000041 - momentum: 0.000000
2023-10-17 13:27:33,910 epoch 3 - iter 623/893 - loss 0.07009245 - time (sec): 48.44 - samples/sec: 3557.20 - lr: 0.000041 - momentum: 0.000000
2023-10-17 13:27:41,521 epoch 3 - iter 712/893 - loss 0.07061403 - time (sec): 56.05 - samples/sec: 3538.67 - lr: 0.000040 - momentum: 0.000000
2023-10-17 13:27:48,514 epoch 3 - iter 801/893 - loss 0.07172932 - time (sec): 63.05 - samples/sec: 3535.47 - lr: 0.000039 - momentum: 0.000000
2023-10-17 13:27:55,514 epoch 3 - iter 890/893 - loss 0.07158095 - time (sec): 70.05 - samples/sec: 3535.31 - lr: 0.000039 - momentum: 0.000000
2023-10-17 13:27:55,798 ----------------------------------------------------------------------------------------------------
2023-10-17 13:27:55,798 EPOCH 3 done: loss 0.0718 - lr: 0.000039
2023-10-17 13:27:59,930 DEV : loss 0.11546944081783295 - f1-score (micro avg) 0.8022
2023-10-17 13:27:59,947 saving best model
2023-10-17 13:28:00,357 ----------------------------------------------------------------------------------------------------
2023-10-17 13:28:07,372 epoch 4 - iter 89/893 - loss 0.04412197 - time (sec): 7.01 - samples/sec: 3686.05 - lr: 0.000038 - momentum: 0.000000
2023-10-17 13:28:14,225 epoch 4 - iter 178/893 - loss 0.04610454 - time (sec): 13.87 - samples/sec: 3640.62 - lr: 0.000038 - momentum: 0.000000
2023-10-17 13:28:21,074 epoch 4 - iter 267/893 - loss 0.04657536 - time (sec): 20.72 - samples/sec: 3671.19 - lr: 0.000037 - momentum: 0.000000
2023-10-17 13:28:28,332 epoch 4 - iter 356/893 - loss 0.04801474 - time (sec): 27.97 - samples/sec: 3645.53 - lr: 0.000037 - momentum: 0.000000
2023-10-17 13:28:35,026 epoch 4 - iter 445/893 - loss 0.04910268 - time (sec): 34.67 - samples/sec: 3628.37 - lr: 0.000036 - momentum: 0.000000
2023-10-17 13:28:42,276 epoch 4 - iter 534/893 - loss 0.04764748 - time (sec): 41.92 - samples/sec: 3606.03 - lr: 0.000036 - momentum: 0.000000
2023-10-17 13:28:49,159 epoch 4 - iter 623/893 - loss 0.04869073 - time (sec): 48.80 - samples/sec: 3610.17 - lr: 0.000035 - momentum: 0.000000
2023-10-17 13:28:55,552 epoch 4 - iter 712/893 - loss 0.04835033 - time (sec): 55.19 - samples/sec: 3619.42 - lr: 0.000034 - momentum: 0.000000
2023-10-17 13:29:02,534 epoch 4 - iter 801/893 - loss 0.04802865 - time (sec): 62.18 - samples/sec: 3603.83 - lr: 0.000034 - momentum: 0.000000
2023-10-17 13:29:09,448 epoch 4 - iter 890/893 - loss 0.04862439 - time (sec): 69.09 - samples/sec: 3586.93 - lr: 0.000033 - momentum: 0.000000
2023-10-17 13:29:09,658 ----------------------------------------------------------------------------------------------------
2023-10-17 13:29:09,658 EPOCH 4 done: loss 0.0486 - lr: 0.000033
2023-10-17 13:29:14,333 DEV : loss 0.14231492578983307 - f1-score (micro avg) 0.7979
2023-10-17 13:29:14,349 ----------------------------------------------------------------------------------------------------
2023-10-17 13:29:21,265 epoch 5 - iter 89/893 - loss 0.02919832 - time (sec): 6.92 - samples/sec: 3587.21 - lr: 0.000033 - momentum: 0.000000
2023-10-17 13:29:28,578 epoch 5 - iter 178/893 - loss 0.03380540 - time (sec): 14.23 - samples/sec: 3596.81 - lr: 0.000032 - momentum: 0.000000
2023-10-17 13:29:35,749 epoch 5 - iter 267/893 - loss 0.03673622 - time (sec): 21.40 - samples/sec: 3588.93 - lr: 0.000032 - momentum: 0.000000
2023-10-17 13:29:42,735 epoch 5 - iter 356/893 - loss 0.03585695 - time (sec): 28.39 - samples/sec: 3571.78 - lr: 0.000031 - momentum: 0.000000
2023-10-17 13:29:49,409 epoch 5 - iter 445/893 - loss 0.03553433 - time (sec): 35.06 - samples/sec: 3555.51 - lr: 0.000031 - momentum: 0.000000
2023-10-17 13:29:56,393 epoch 5 - iter 534/893 - loss 0.03588921 - time (sec): 42.04 - samples/sec: 3566.40 - lr: 0.000030 - momentum: 0.000000
2023-10-17 13:30:03,143 epoch 5 - iter 623/893 - loss 0.03598839 - time (sec): 48.79 - samples/sec: 3568.67 - lr: 0.000029 - momentum: 0.000000
2023-10-17 13:30:09,807 epoch 5 - iter 712/893 - loss 0.03692474 - time (sec): 55.46 - samples/sec: 3586.34 - lr: 0.000029 - momentum: 0.000000
2023-10-17 13:30:16,339 epoch 5 - iter 801/893 - loss 0.03697731 - time (sec): 61.99 - samples/sec: 3570.11 - lr: 0.000028 - momentum: 0.000000
2023-10-17 13:30:23,926 epoch 5 - iter 890/893 - loss 0.03792902 - time (sec): 69.58 - samples/sec: 3562.29 - lr: 0.000028 - momentum: 0.000000
2023-10-17 13:30:24,182 ----------------------------------------------------------------------------------------------------
2023-10-17 13:30:24,182 EPOCH 5 done: loss 0.0378 - lr: 0.000028
2023-10-17 13:30:28,303 DEV : loss 0.1556406468153 - f1-score (micro avg) 0.7992
2023-10-17 13:30:28,320 ----------------------------------------------------------------------------------------------------
2023-10-17 13:30:35,522 epoch 6 - iter 89/893 - loss 0.03244423 - time (sec): 7.20 - samples/sec: 3480.52 - lr: 0.000027 - momentum: 0.000000
2023-10-17 13:30:42,825 epoch 6 - iter 178/893 - loss 0.02917985 - time (sec): 14.50 - samples/sec: 3535.82 - lr: 0.000027 - momentum: 0.000000
2023-10-17 13:30:49,786 epoch 6 - iter 267/893 - loss 0.02840967 - time (sec): 21.47 - samples/sec: 3499.22 - lr: 0.000026 - momentum: 0.000000
2023-10-17 13:30:56,763 epoch 6 - iter 356/893 - loss 0.02860021 - time (sec): 28.44 - samples/sec: 3506.93 - lr: 0.000026 - momentum: 0.000000
2023-10-17 13:31:03,699 epoch 6 - iter 445/893 - loss 0.02825516 - time (sec): 35.38 - samples/sec: 3497.03 - lr: 0.000025 - momentum: 0.000000
2023-10-17 13:31:10,471 epoch 6 - iter 534/893 - loss 0.02743104 - time (sec): 42.15 - samples/sec: 3508.88 - lr: 0.000024 - momentum: 0.000000
2023-10-17 13:31:17,404 epoch 6 - iter 623/893 - loss 0.02858377 - time (sec): 49.08 - samples/sec: 3519.50 - lr: 0.000024 - momentum: 0.000000
2023-10-17 13:31:24,472 epoch 6 - iter 712/893 - loss 0.02891426 - time (sec): 56.15 - samples/sec: 3536.30 - lr: 0.000023 - momentum: 0.000000
2023-10-17 13:31:31,162 epoch 6 - iter 801/893 - loss 0.02921549 - time (sec): 62.84 - samples/sec: 3545.04 - lr: 0.000023 - momentum: 0.000000
2023-10-17 13:31:37,875 epoch 6 - iter 890/893 - loss 0.02861389 - time (sec): 69.55 - samples/sec: 3563.39 - lr: 0.000022 - momentum: 0.000000
2023-10-17 13:31:38,099 ----------------------------------------------------------------------------------------------------
2023-10-17 13:31:38,099 EPOCH 6 done: loss 0.0286 - lr: 0.000022
2023-10-17 13:31:42,231 DEV : loss 0.19660857319831848 - f1-score (micro avg) 0.8014
2023-10-17 13:31:42,248 ----------------------------------------------------------------------------------------------------
2023-10-17 13:31:49,341 epoch 7 - iter 89/893 - loss 0.01678255 - time (sec): 7.09 - samples/sec: 3621.51 - lr: 0.000022 - momentum: 0.000000
2023-10-17 13:31:56,211 epoch 7 - iter 178/893 - loss 0.01553467 - time (sec): 13.96 - samples/sec: 3639.54 - lr: 0.000021 - momentum: 0.000000
2023-10-17 13:32:02,722 epoch 7 - iter 267/893 - loss 0.01925221 - time (sec): 20.47 - samples/sec: 3658.02 - lr: 0.000021 - momentum: 0.000000
2023-10-17 13:32:09,570 epoch 7 - iter 356/893 - loss 0.02042759 - time (sec): 27.32 - samples/sec: 3676.51 - lr: 0.000020 - momentum: 0.000000
2023-10-17 13:32:16,679 epoch 7 - iter 445/893 - loss 0.02070852 - time (sec): 34.43 - samples/sec: 3652.01 - lr: 0.000019 - momentum: 0.000000
2023-10-17 13:32:23,162 epoch 7 - iter 534/893 - loss 0.02114971 - time (sec): 40.91 - samples/sec: 3654.12 - lr: 0.000019 - momentum: 0.000000
2023-10-17 13:32:30,075 epoch 7 - iter 623/893 - loss 0.02086037 - time (sec): 47.83 - samples/sec: 3667.87 - lr: 0.000018 - momentum: 0.000000
2023-10-17 13:32:36,985 epoch 7 - iter 712/893 - loss 0.02012071 - time (sec): 54.74 - samples/sec: 3654.83 - lr: 0.000018 - momentum: 0.000000
2023-10-17 13:32:43,800 epoch 7 - iter 801/893 - loss 0.02038745 - time (sec): 61.55 - samples/sec: 3617.12 - lr: 0.000017 - momentum: 0.000000
2023-10-17 13:32:50,696 epoch 7 - iter 890/893 - loss 0.02046484 - time (sec): 68.45 - samples/sec: 3615.30 - lr: 0.000017 - momentum: 0.000000
2023-10-17 13:32:50,929 ----------------------------------------------------------------------------------------------------
2023-10-17 13:32:50,930 EPOCH 7 done: loss 0.0204 - lr: 0.000017
2023-10-17 13:32:55,592 DEV : loss 0.2123110592365265 - f1-score (micro avg) 0.8067
2023-10-17 13:32:55,610 saving best model
2023-10-17 13:32:56,074 ----------------------------------------------------------------------------------------------------
2023-10-17 13:33:03,283 epoch 8 - iter 89/893 - loss 0.01777584 - time (sec): 7.21 - samples/sec: 3367.87 - lr: 0.000016 - momentum: 0.000000
2023-10-17 13:33:10,120 epoch 8 - iter 178/893 - loss 0.01370706 - time (sec): 14.04 - samples/sec: 3476.86 - lr: 0.000016 - momentum: 0.000000
2023-10-17 13:33:16,860 epoch 8 - iter 267/893 - loss 0.01393815 - time (sec): 20.78 - samples/sec: 3522.88 - lr: 0.000015 - momentum: 0.000000
2023-10-17 13:33:23,827 epoch 8 - iter 356/893 - loss 0.01526503 - time (sec): 27.75 - samples/sec: 3514.42 - lr: 0.000014 - momentum: 0.000000
2023-10-17 13:33:30,667 epoch 8 - iter 445/893 - loss 0.01611125 - time (sec): 34.59 - samples/sec: 3537.20 - lr: 0.000014 - momentum: 0.000000
2023-10-17 13:33:37,620 epoch 8 - iter 534/893 - loss 0.01582779 - time (sec): 41.54 - samples/sec: 3521.50 - lr: 0.000013 - momentum: 0.000000
2023-10-17 13:33:44,461 epoch 8 - iter 623/893 - loss 0.01549864 - time (sec): 48.38 - samples/sec: 3546.15 - lr: 0.000013 - momentum: 0.000000
2023-10-17 13:33:52,073 epoch 8 - iter 712/893 - loss 0.01573317 - time (sec): 56.00 - samples/sec: 3543.71 - lr: 0.000012 - momentum: 0.000000
2023-10-17 13:33:58,734 epoch 8 - iter 801/893 - loss 0.01601116 - time (sec): 62.66 - samples/sec: 3552.01 - lr: 0.000012 - momentum: 0.000000
2023-10-17 13:34:05,638 epoch 8 - iter 890/893 - loss 0.01543464 - time (sec): 69.56 - samples/sec: 3567.03 - lr: 0.000011 - momentum: 0.000000
2023-10-17 13:34:05,852 ----------------------------------------------------------------------------------------------------
2023-10-17 13:34:05,852 EPOCH 8 done: loss 0.0155 - lr: 0.000011
2023-10-17 13:34:10,003 DEV : loss 0.22176583111286163 - f1-score (micro avg) 0.8003
2023-10-17 13:34:10,021 ----------------------------------------------------------------------------------------------------
2023-10-17 13:34:18,103 epoch 9 - iter 89/893 - loss 0.01083963 - time (sec): 8.08 - samples/sec: 3159.68 - lr: 0.000011 - momentum: 0.000000
2023-10-17 13:34:25,070 epoch 9 - iter 178/893 - loss 0.00956570 - time (sec): 15.05 - samples/sec: 3388.71 - lr: 0.000010 - momentum: 0.000000
2023-10-17 13:34:31,928 epoch 9 - iter 267/893 - loss 0.01138130 - time (sec): 21.91 - samples/sec: 3434.27 - lr: 0.000009 - momentum: 0.000000
2023-10-17 13:34:38,528 epoch 9 - iter 356/893 - loss 0.01058467 - time (sec): 28.51 - samples/sec: 3469.81 - lr: 0.000009 - momentum: 0.000000
2023-10-17 13:34:45,321 epoch 9 - iter 445/893 - loss 0.00921370 - time (sec): 35.30 - samples/sec: 3500.48 - lr: 0.000008 - momentum: 0.000000
2023-10-17 13:34:51,981 epoch 9 - iter 534/893 - loss 0.00953823 - time (sec): 41.96 - samples/sec: 3527.17 - lr: 0.000008 - momentum: 0.000000
2023-10-17 13:34:58,609 epoch 9 - iter 623/893 - loss 0.00962444 - time (sec): 48.59 - samples/sec: 3523.06 - lr: 0.000007 - momentum: 0.000000
2023-10-17 13:35:05,539 epoch 9 - iter 712/893 - loss 0.01033271 - time (sec): 55.52 - samples/sec: 3533.02 - lr: 0.000007 - momentum: 0.000000
2023-10-17 13:35:12,598 epoch 9 - iter 801/893 - loss 0.01059466 - time (sec): 62.58 - samples/sec: 3540.07 - lr: 0.000006 - momentum: 0.000000
2023-10-17 13:35:19,637 epoch 9 - iter 890/893 - loss 0.01016129 - time (sec): 69.61 - samples/sec: 3565.62 - lr: 0.000006 - momentum: 0.000000
2023-10-17 13:35:19,813 ----------------------------------------------------------------------------------------------------
2023-10-17 13:35:19,813 EPOCH 9 done: loss 0.0101 - lr: 0.000006
2023-10-17 13:35:23,967 DEV : loss 0.2231239527463913 - f1-score (micro avg) 0.8124
2023-10-17 13:35:23,985 saving best model
2023-10-17 13:35:24,449 ----------------------------------------------------------------------------------------------------
2023-10-17 13:35:31,551 epoch 10 - iter 89/893 - loss 0.00425626 - time (sec): 7.10 - samples/sec: 3586.43 - lr: 0.000005 - momentum: 0.000000
2023-10-17 13:35:38,709 epoch 10 - iter 178/893 - loss 0.00582628 - time (sec): 14.25 - samples/sec: 3585.95 - lr: 0.000004 - momentum: 0.000000
2023-10-17 13:35:45,652 epoch 10 - iter 267/893 - loss 0.00793966 - time (sec): 21.20 - samples/sec: 3592.75 - lr: 0.000004 - momentum: 0.000000
2023-10-17 13:35:52,247 epoch 10 - iter 356/893 - loss 0.00702058 - time (sec): 27.79 - samples/sec: 3578.58 - lr: 0.000003 - momentum: 0.000000
2023-10-17 13:35:59,564 epoch 10 - iter 445/893 - loss 0.00689434 - time (sec): 35.11 - samples/sec: 3565.57 - lr: 0.000003 - momentum: 0.000000
2023-10-17 13:36:06,713 epoch 10 - iter 534/893 - loss 0.00633107 - time (sec): 42.26 - samples/sec: 3543.91 - lr: 0.000002 - momentum: 0.000000
2023-10-17 13:36:13,298 epoch 10 - iter 623/893 - loss 0.00613990 - time (sec): 48.84 - samples/sec: 3557.23 - lr: 0.000002 - momentum: 0.000000
2023-10-17 13:36:20,364 epoch 10 - iter 712/893 - loss 0.00603713 - time (sec): 55.91 - samples/sec: 3563.05 - lr: 0.000001 - momentum: 0.000000
2023-10-17 13:36:27,000 epoch 10 - iter 801/893 - loss 0.00645980 - time (sec): 62.55 - samples/sec: 3571.76 - lr: 0.000001 - momentum: 0.000000
2023-10-17 13:36:34,138 epoch 10 - iter 890/893 - loss 0.00649064 - time (sec): 69.68 - samples/sec: 3557.52 - lr: 0.000000 - momentum: 0.000000
2023-10-17 13:36:34,324 ----------------------------------------------------------------------------------------------------
2023-10-17 13:36:34,324 EPOCH 10 done: loss 0.0065 - lr: 0.000000
2023-10-17 13:36:39,073 DEV : loss 0.23280413448810577 - f1-score (micro avg) 0.8165
2023-10-17 13:36:39,090 saving best model
2023-10-17 13:36:39,905 ----------------------------------------------------------------------------------------------------
2023-10-17 13:36:39,907 Loading model from best epoch ...
2023-10-17 13:36:41,238 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-17 13:36:50,854
Results:
- F-score (micro) 0.6959
- F-score (macro) 0.6247
- Accuracy 0.5492
By class:
precision recall f1-score support
LOC 0.6964 0.6995 0.6979 1095
PER 0.7849 0.7826 0.7838 1012
ORG 0.4352 0.5742 0.4952 357
HumanProd 0.4068 0.7273 0.5217 33
micro avg 0.6772 0.7157 0.6959 2497
macro avg 0.5808 0.6959 0.6247 2497
weighted avg 0.6911 0.7157 0.7014 2497
2023-10-17 13:36:50,854 ----------------------------------------------------------------------------------------------------