Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697559529.bce904bcef33.2251.5 +3 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c65c9d0585e4ef0cd4aa7d8bcbbb2f6b0a72b1d49e9c6947d44ce8e511d437f
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 16:20:02 0.0000 0.3666 0.0854 0.8399 0.8130 0.8262 0.7148
|
3 |
+
2 16:21:19 0.0000 0.0963 0.0902 0.8866 0.7913 0.8362 0.7288
|
4 |
+
3 16:22:34 0.0000 0.0723 0.0939 0.8844 0.8223 0.8522 0.7545
|
5 |
+
4 16:23:49 0.0000 0.0541 0.1042 0.8690 0.8430 0.8558 0.7619
|
6 |
+
5 16:25:04 0.0000 0.0434 0.1496 0.8838 0.7231 0.7955 0.6699
|
7 |
+
6 16:26:17 0.0000 0.0289 0.1501 0.8960 0.7562 0.8202 0.7086
|
8 |
+
7 16:27:31 0.0000 0.0204 0.1493 0.8920 0.8275 0.8585 0.7636
|
9 |
+
8 16:28:46 0.0000 0.0134 0.1695 0.8944 0.8140 0.8524 0.7562
|
10 |
+
9 16:30:04 0.0000 0.0096 0.1593 0.8959 0.8357 0.8648 0.7712
|
11 |
+
10 16:31:25 0.0000 0.0061 0.1579 0.8966 0.8419 0.8684 0.7784
|
runs/events.out.tfevents.1697559529.bce904bcef33.2251.5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:532b837be18a0fcfb810252f6aa6cf7ebdc5b56ccab46472abafd5d182e6ddbf
|
3 |
+
size 808480
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 16:18:49,833 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 16:18:49,834 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 16:18:49,834 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 16:18:49,834 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
49 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 16:18:49,835 Train: 5777 sentences
|
51 |
+
2023-10-17 16:18:49,835 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 16:18:49,835 Training Params:
|
54 |
+
2023-10-17 16:18:49,835 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 16:18:49,835 - mini_batch_size: "4"
|
56 |
+
2023-10-17 16:18:49,835 - max_epochs: "10"
|
57 |
+
2023-10-17 16:18:49,835 - shuffle: "True"
|
58 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 16:18:49,835 Plugins:
|
60 |
+
2023-10-17 16:18:49,835 - TensorboardLogger
|
61 |
+
2023-10-17 16:18:49,835 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 16:18:49,835 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 16:18:49,835 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 16:18:49,835 Computation:
|
67 |
+
2023-10-17 16:18:49,835 - compute on device: cuda:0
|
68 |
+
2023-10-17 16:18:49,835 - embedding storage: none
|
69 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 16:18:49,835 Model training base path: "hmbench-icdar/nl-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
71 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 16:18:49,835 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 16:18:49,835 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 16:18:56,849 epoch 1 - iter 144/1445 - loss 2.13705809 - time (sec): 7.01 - samples/sec: 2602.15 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 16:19:03,750 epoch 1 - iter 288/1445 - loss 1.21878406 - time (sec): 13.91 - samples/sec: 2562.25 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 16:19:10,804 epoch 1 - iter 432/1445 - loss 0.90739784 - time (sec): 20.97 - samples/sec: 2498.56 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 16:19:17,974 epoch 1 - iter 576/1445 - loss 0.72044535 - time (sec): 28.14 - samples/sec: 2490.68 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 16:19:25,043 epoch 1 - iter 720/1445 - loss 0.60080964 - time (sec): 35.21 - samples/sec: 2512.23 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 16:19:31,904 epoch 1 - iter 864/1445 - loss 0.52771699 - time (sec): 42.07 - samples/sec: 2513.55 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 16:19:38,848 epoch 1 - iter 1008/1445 - loss 0.47241003 - time (sec): 49.01 - samples/sec: 2521.27 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 16:19:45,917 epoch 1 - iter 1152/1445 - loss 0.42720095 - time (sec): 56.08 - samples/sec: 2519.40 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 16:19:52,870 epoch 1 - iter 1296/1445 - loss 0.39375757 - time (sec): 63.03 - samples/sec: 2509.51 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 16:19:59,869 epoch 1 - iter 1440/1445 - loss 0.36718281 - time (sec): 70.03 - samples/sec: 2509.84 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 16:20:00,093 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 16:20:00,093 EPOCH 1 done: loss 0.3666 - lr: 0.000050
|
86 |
+
2023-10-17 16:20:02,889 DEV : loss 0.0853525772690773 - f1-score (micro avg) 0.8262
|
87 |
+
2023-10-17 16:20:02,908 saving best model
|
88 |
+
2023-10-17 16:20:03,241 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 16:20:09,898 epoch 2 - iter 144/1445 - loss 0.13163265 - time (sec): 6.65 - samples/sec: 2487.09 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 16:20:16,952 epoch 2 - iter 288/1445 - loss 0.11859313 - time (sec): 13.71 - samples/sec: 2444.56 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 16:20:24,250 epoch 2 - iter 432/1445 - loss 0.10993065 - time (sec): 21.01 - samples/sec: 2427.99 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 16:20:31,667 epoch 2 - iter 576/1445 - loss 0.10512844 - time (sec): 28.42 - samples/sec: 2425.61 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 16:20:38,916 epoch 2 - iter 720/1445 - loss 0.10132998 - time (sec): 35.67 - samples/sec: 2409.57 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 16:20:46,181 epoch 2 - iter 864/1445 - loss 0.09827432 - time (sec): 42.94 - samples/sec: 2449.22 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 16:20:53,243 epoch 2 - iter 1008/1445 - loss 0.09734789 - time (sec): 50.00 - samples/sec: 2461.18 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 16:21:00,233 epoch 2 - iter 1152/1445 - loss 0.09616555 - time (sec): 56.99 - samples/sec: 2456.82 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 16:21:07,398 epoch 2 - iter 1296/1445 - loss 0.09677640 - time (sec): 64.15 - samples/sec: 2465.71 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 16:21:14,472 epoch 2 - iter 1440/1445 - loss 0.09633877 - time (sec): 71.23 - samples/sec: 2467.41 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 16:21:14,703 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 16:21:14,703 EPOCH 2 done: loss 0.0963 - lr: 0.000044
|
101 |
+
2023-10-17 16:21:19,008 DEV : loss 0.09023821353912354 - f1-score (micro avg) 0.8362
|
102 |
+
2023-10-17 16:21:19,040 saving best model
|
103 |
+
2023-10-17 16:21:19,492 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 16:21:26,867 epoch 3 - iter 144/1445 - loss 0.07639569 - time (sec): 7.37 - samples/sec: 2469.85 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 16:21:33,792 epoch 3 - iter 288/1445 - loss 0.07289280 - time (sec): 14.30 - samples/sec: 2474.87 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 16:21:41,036 epoch 3 - iter 432/1445 - loss 0.07369285 - time (sec): 21.54 - samples/sec: 2526.94 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 16:21:47,971 epoch 3 - iter 576/1445 - loss 0.07352607 - time (sec): 28.48 - samples/sec: 2503.52 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 16:21:55,171 epoch 3 - iter 720/1445 - loss 0.07225890 - time (sec): 35.68 - samples/sec: 2486.81 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 16:22:02,381 epoch 3 - iter 864/1445 - loss 0.06938398 - time (sec): 42.88 - samples/sec: 2494.71 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 16:22:09,345 epoch 3 - iter 1008/1445 - loss 0.07054082 - time (sec): 49.85 - samples/sec: 2475.72 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 16:22:16,271 epoch 3 - iter 1152/1445 - loss 0.07020152 - time (sec): 56.78 - samples/sec: 2463.08 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 16:22:23,487 epoch 3 - iter 1296/1445 - loss 0.07093905 - time (sec): 63.99 - samples/sec: 2465.29 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 16:22:30,787 epoch 3 - iter 1440/1445 - loss 0.07220694 - time (sec): 71.29 - samples/sec: 2462.25 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 16:22:31,037 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 16:22:31,038 EPOCH 3 done: loss 0.0723 - lr: 0.000039
|
116 |
+
2023-10-17 16:22:34,317 DEV : loss 0.09389135241508484 - f1-score (micro avg) 0.8522
|
117 |
+
2023-10-17 16:22:34,334 saving best model
|
118 |
+
2023-10-17 16:22:34,794 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 16:22:41,916 epoch 4 - iter 144/1445 - loss 0.03934107 - time (sec): 7.12 - samples/sec: 2501.87 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 16:22:48,884 epoch 4 - iter 288/1445 - loss 0.04960378 - time (sec): 14.09 - samples/sec: 2474.30 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 16:22:55,742 epoch 4 - iter 432/1445 - loss 0.04967966 - time (sec): 20.95 - samples/sec: 2464.10 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 16:23:02,583 epoch 4 - iter 576/1445 - loss 0.05239601 - time (sec): 27.79 - samples/sec: 2472.89 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 16:23:10,050 epoch 4 - iter 720/1445 - loss 0.05481533 - time (sec): 35.25 - samples/sec: 2459.94 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 16:23:17,233 epoch 4 - iter 864/1445 - loss 0.05681795 - time (sec): 42.44 - samples/sec: 2473.57 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 16:23:24,313 epoch 4 - iter 1008/1445 - loss 0.05672883 - time (sec): 49.52 - samples/sec: 2478.78 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 16:23:31,477 epoch 4 - iter 1152/1445 - loss 0.05481502 - time (sec): 56.68 - samples/sec: 2477.63 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 16:23:38,544 epoch 4 - iter 1296/1445 - loss 0.05437627 - time (sec): 63.75 - samples/sec: 2479.36 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 16:23:45,784 epoch 4 - iter 1440/1445 - loss 0.05419519 - time (sec): 70.99 - samples/sec: 2475.65 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 16:23:46,031 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 16:23:46,032 EPOCH 4 done: loss 0.0541 - lr: 0.000033
|
131 |
+
2023-10-17 16:23:49,286 DEV : loss 0.10415765643119812 - f1-score (micro avg) 0.8558
|
132 |
+
2023-10-17 16:23:49,302 saving best model
|
133 |
+
2023-10-17 16:23:49,759 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 16:23:56,689 epoch 5 - iter 144/1445 - loss 0.05670271 - time (sec): 6.93 - samples/sec: 2374.53 - lr: 0.000033 - momentum: 0.000000
|
135 |
+
2023-10-17 16:24:03,688 epoch 5 - iter 288/1445 - loss 0.04436221 - time (sec): 13.93 - samples/sec: 2443.03 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 16:24:10,773 epoch 5 - iter 432/1445 - loss 0.04616850 - time (sec): 21.01 - samples/sec: 2458.36 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-17 16:24:17,711 epoch 5 - iter 576/1445 - loss 0.04352124 - time (sec): 27.95 - samples/sec: 2426.81 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 16:24:25,343 epoch 5 - iter 720/1445 - loss 0.04411388 - time (sec): 35.58 - samples/sec: 2418.81 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-17 16:24:32,451 epoch 5 - iter 864/1445 - loss 0.04402856 - time (sec): 42.69 - samples/sec: 2426.02 - lr: 0.000030 - momentum: 0.000000
|
140 |
+
2023-10-17 16:24:39,891 epoch 5 - iter 1008/1445 - loss 0.04635845 - time (sec): 50.13 - samples/sec: 2442.79 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 16:24:47,269 epoch 5 - iter 1152/1445 - loss 0.04510679 - time (sec): 57.51 - samples/sec: 2459.29 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-17 16:24:54,254 epoch 5 - iter 1296/1445 - loss 0.04387905 - time (sec): 64.49 - samples/sec: 2467.17 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 16:25:00,944 epoch 5 - iter 1440/1445 - loss 0.04340737 - time (sec): 71.18 - samples/sec: 2466.49 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-17 16:25:01,206 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 16:25:01,206 EPOCH 5 done: loss 0.0434 - lr: 0.000028
|
146 |
+
2023-10-17 16:25:04,542 DEV : loss 0.14961402118206024 - f1-score (micro avg) 0.7955
|
147 |
+
2023-10-17 16:25:04,563 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 16:25:11,913 epoch 6 - iter 144/1445 - loss 0.05786667 - time (sec): 7.35 - samples/sec: 2503.05 - lr: 0.000027 - momentum: 0.000000
|
149 |
+
2023-10-17 16:25:18,998 epoch 6 - iter 288/1445 - loss 0.03941575 - time (sec): 14.43 - samples/sec: 2463.13 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 16:25:25,910 epoch 6 - iter 432/1445 - loss 0.03463529 - time (sec): 21.35 - samples/sec: 2477.92 - lr: 0.000026 - momentum: 0.000000
|
151 |
+
2023-10-17 16:25:32,830 epoch 6 - iter 576/1445 - loss 0.03145162 - time (sec): 28.27 - samples/sec: 2487.21 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 16:25:39,923 epoch 6 - iter 720/1445 - loss 0.02986732 - time (sec): 35.36 - samples/sec: 2501.74 - lr: 0.000025 - momentum: 0.000000
|
153 |
+
2023-10-17 16:25:46,695 epoch 6 - iter 864/1445 - loss 0.02915652 - time (sec): 42.13 - samples/sec: 2533.84 - lr: 0.000024 - momentum: 0.000000
|
154 |
+
2023-10-17 16:25:53,428 epoch 6 - iter 1008/1445 - loss 0.02815790 - time (sec): 48.86 - samples/sec: 2551.88 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 16:26:00,418 epoch 6 - iter 1152/1445 - loss 0.02863677 - time (sec): 55.85 - samples/sec: 2527.10 - lr: 0.000023 - momentum: 0.000000
|
156 |
+
2023-10-17 16:26:07,287 epoch 6 - iter 1296/1445 - loss 0.02857277 - time (sec): 62.72 - samples/sec: 2519.48 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 16:26:14,266 epoch 6 - iter 1440/1445 - loss 0.02901616 - time (sec): 69.70 - samples/sec: 2518.37 - lr: 0.000022 - momentum: 0.000000
|
158 |
+
2023-10-17 16:26:14,559 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 16:26:14,559 EPOCH 6 done: loss 0.0289 - lr: 0.000022
|
160 |
+
2023-10-17 16:26:17,754 DEV : loss 0.15008436143398285 - f1-score (micro avg) 0.8202
|
161 |
+
2023-10-17 16:26:17,770 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-17 16:26:24,700 epoch 7 - iter 144/1445 - loss 0.02000359 - time (sec): 6.93 - samples/sec: 2656.70 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-17 16:26:31,753 epoch 7 - iter 288/1445 - loss 0.01569030 - time (sec): 13.98 - samples/sec: 2590.17 - lr: 0.000021 - momentum: 0.000000
|
164 |
+
2023-10-17 16:26:39,001 epoch 7 - iter 432/1445 - loss 0.01782813 - time (sec): 21.23 - samples/sec: 2505.61 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 16:26:46,180 epoch 7 - iter 576/1445 - loss 0.01964390 - time (sec): 28.41 - samples/sec: 2499.50 - lr: 0.000020 - momentum: 0.000000
|
166 |
+
2023-10-17 16:26:53,381 epoch 7 - iter 720/1445 - loss 0.01835474 - time (sec): 35.61 - samples/sec: 2499.50 - lr: 0.000019 - momentum: 0.000000
|
167 |
+
2023-10-17 16:27:00,040 epoch 7 - iter 864/1445 - loss 0.01866023 - time (sec): 42.27 - samples/sec: 2508.78 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-17 16:27:07,184 epoch 7 - iter 1008/1445 - loss 0.01877361 - time (sec): 49.41 - samples/sec: 2486.61 - lr: 0.000018 - momentum: 0.000000
|
169 |
+
2023-10-17 16:27:13,862 epoch 7 - iter 1152/1445 - loss 0.01962775 - time (sec): 56.09 - samples/sec: 2498.38 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 16:27:20,488 epoch 7 - iter 1296/1445 - loss 0.01955537 - time (sec): 62.72 - samples/sec: 2507.44 - lr: 0.000017 - momentum: 0.000000
|
171 |
+
2023-10-17 16:27:27,403 epoch 7 - iter 1440/1445 - loss 0.02047548 - time (sec): 69.63 - samples/sec: 2522.27 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 16:27:27,637 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-17 16:27:27,637 EPOCH 7 done: loss 0.0204 - lr: 0.000017
|
174 |
+
2023-10-17 16:27:31,016 DEV : loss 0.14934930205345154 - f1-score (micro avg) 0.8585
|
175 |
+
2023-10-17 16:27:31,032 saving best model
|
176 |
+
2023-10-17 16:27:31,496 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 16:27:38,491 epoch 8 - iter 144/1445 - loss 0.01993635 - time (sec): 6.99 - samples/sec: 2446.12 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 16:27:45,557 epoch 8 - iter 288/1445 - loss 0.01529310 - time (sec): 14.06 - samples/sec: 2434.12 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-17 16:27:52,729 epoch 8 - iter 432/1445 - loss 0.01421649 - time (sec): 21.23 - samples/sec: 2451.36 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-17 16:27:59,839 epoch 8 - iter 576/1445 - loss 0.01275077 - time (sec): 28.34 - samples/sec: 2445.92 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 16:28:06,792 epoch 8 - iter 720/1445 - loss 0.01099475 - time (sec): 35.29 - samples/sec: 2421.95 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-17 16:28:14,048 epoch 8 - iter 864/1445 - loss 0.01053576 - time (sec): 42.55 - samples/sec: 2442.96 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 16:28:21,295 epoch 8 - iter 1008/1445 - loss 0.01107931 - time (sec): 49.80 - samples/sec: 2455.05 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-17 16:28:28,360 epoch 8 - iter 1152/1445 - loss 0.01295286 - time (sec): 56.86 - samples/sec: 2453.26 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 16:28:35,774 epoch 8 - iter 1296/1445 - loss 0.01309587 - time (sec): 64.28 - samples/sec: 2455.43 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-17 16:28:43,046 epoch 8 - iter 1440/1445 - loss 0.01319627 - time (sec): 71.55 - samples/sec: 2454.86 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-17 16:28:43,274 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 16:28:43,274 EPOCH 8 done: loss 0.0134 - lr: 0.000011
|
189 |
+
2023-10-17 16:28:46,569 DEV : loss 0.16947199404239655 - f1-score (micro avg) 0.8524
|
190 |
+
2023-10-17 16:28:46,602 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 16:28:53,623 epoch 9 - iter 144/1445 - loss 0.00899269 - time (sec): 7.02 - samples/sec: 2577.61 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-17 16:29:01,060 epoch 9 - iter 288/1445 - loss 0.01406469 - time (sec): 14.46 - samples/sec: 2548.89 - lr: 0.000010 - momentum: 0.000000
|
193 |
+
2023-10-17 16:29:08,313 epoch 9 - iter 432/1445 - loss 0.01182979 - time (sec): 21.71 - samples/sec: 2487.70 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 16:29:15,658 epoch 9 - iter 576/1445 - loss 0.01105186 - time (sec): 29.06 - samples/sec: 2453.24 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-17 16:29:22,816 epoch 9 - iter 720/1445 - loss 0.01186549 - time (sec): 36.21 - samples/sec: 2470.18 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 16:29:30,151 epoch 9 - iter 864/1445 - loss 0.01072237 - time (sec): 43.55 - samples/sec: 2460.49 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 16:29:37,289 epoch 9 - iter 1008/1445 - loss 0.01098163 - time (sec): 50.69 - samples/sec: 2446.11 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 16:29:44,787 epoch 9 - iter 1152/1445 - loss 0.01023991 - time (sec): 58.18 - samples/sec: 2426.10 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 16:29:52,556 epoch 9 - iter 1296/1445 - loss 0.01014140 - time (sec): 65.95 - samples/sec: 2401.36 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 16:30:00,822 epoch 9 - iter 1440/1445 - loss 0.00966526 - time (sec): 74.22 - samples/sec: 2365.25 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 16:30:01,060 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 16:30:01,060 EPOCH 9 done: loss 0.0096 - lr: 0.000006
|
203 |
+
2023-10-17 16:30:04,778 DEV : loss 0.15933012962341309 - f1-score (micro avg) 0.8648
|
204 |
+
2023-10-17 16:30:04,794 saving best model
|
205 |
+
2023-10-17 16:30:05,250 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-17 16:30:13,087 epoch 10 - iter 144/1445 - loss 0.00391485 - time (sec): 7.83 - samples/sec: 2316.86 - lr: 0.000005 - momentum: 0.000000
|
207 |
+
2023-10-17 16:30:20,360 epoch 10 - iter 288/1445 - loss 0.00316501 - time (sec): 15.11 - samples/sec: 2309.41 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-17 16:30:27,734 epoch 10 - iter 432/1445 - loss 0.00358503 - time (sec): 22.48 - samples/sec: 2231.35 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-17 16:30:35,048 epoch 10 - iter 576/1445 - loss 0.00564098 - time (sec): 29.80 - samples/sec: 2274.25 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 16:30:43,390 epoch 10 - iter 720/1445 - loss 0.00548837 - time (sec): 38.14 - samples/sec: 2249.40 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 16:30:51,087 epoch 10 - iter 864/1445 - loss 0.00552389 - time (sec): 45.83 - samples/sec: 2243.93 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 16:30:59,119 epoch 10 - iter 1008/1445 - loss 0.00560035 - time (sec): 53.87 - samples/sec: 2241.21 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 16:31:07,014 epoch 10 - iter 1152/1445 - loss 0.00546225 - time (sec): 61.76 - samples/sec: 2241.91 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 16:31:14,728 epoch 10 - iter 1296/1445 - loss 0.00603445 - time (sec): 69.48 - samples/sec: 2258.14 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 16:31:21,998 epoch 10 - iter 1440/1445 - loss 0.00608040 - time (sec): 76.75 - samples/sec: 2289.15 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 16:31:22,229 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 16:31:22,230 EPOCH 10 done: loss 0.0061 - lr: 0.000000
|
218 |
+
2023-10-17 16:31:25,469 DEV : loss 0.15785089135169983 - f1-score (micro avg) 0.8684
|
219 |
+
2023-10-17 16:31:25,485 saving best model
|
220 |
+
2023-10-17 16:31:26,269 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-17 16:31:26,270 Loading model from best epoch ...
|
222 |
+
2023-10-17 16:31:27,631 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
223 |
+
2023-10-17 16:31:30,393
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.8444
|
226 |
+
- F-score (macro) 0.7376
|
227 |
+
- Accuracy 0.7372
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
PER 0.8584 0.8299 0.8439 482
|
233 |
+
LOC 0.9402 0.8581 0.8973 458
|
234 |
+
ORG 0.5370 0.4203 0.4715 69
|
235 |
+
|
236 |
+
micro avg 0.8763 0.8147 0.8444 1009
|
237 |
+
macro avg 0.7785 0.7027 0.7376 1009
|
238 |
+
weighted avg 0.8735 0.8147 0.8426 1009
|
239 |
+
|
240 |
+
2023-10-17 16:31:30,393 ----------------------------------------------------------------------------------------------------
|