stefan-it commited on
Commit
634349c
1 Parent(s): 7326294

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +506 -0
training.log ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-24 17:38:12,465 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-24 17:38:12,466 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-24 17:38:12,466 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-24 17:38:12,467 MultiCorpus: 7936 train + 992 dev + 992 test sentences
316
+ - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
317
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-24 17:38:12,467 Train: 7936 sentences
319
+ 2023-10-24 17:38:12,467 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-24 17:38:12,467 Training Params:
322
+ 2023-10-24 17:38:12,467 - learning_rate: "3e-05"
323
+ 2023-10-24 17:38:12,467 - mini_batch_size: "8"
324
+ 2023-10-24 17:38:12,467 - max_epochs: "10"
325
+ 2023-10-24 17:38:12,467 - shuffle: "True"
326
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-24 17:38:12,467 Plugins:
328
+ 2023-10-24 17:38:12,467 - TensorboardLogger
329
+ 2023-10-24 17:38:12,467 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-24 17:38:12,467 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-24 17:38:12,467 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-24 17:38:12,467 Computation:
335
+ 2023-10-24 17:38:12,467 - compute on device: cuda:0
336
+ 2023-10-24 17:38:12,467 - embedding storage: none
337
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-24 17:38:12,467 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
339
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-24 17:38:12,467 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-24 17:38:20,974 epoch 1 - iter 99/992 - loss 1.74525625 - time (sec): 8.51 - samples/sec: 2051.05 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-24 17:38:29,111 epoch 1 - iter 198/992 - loss 1.08863551 - time (sec): 16.64 - samples/sec: 2023.06 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-24 17:38:37,169 epoch 1 - iter 297/992 - loss 0.81797787 - time (sec): 24.70 - samples/sec: 1987.76 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-24 17:38:45,550 epoch 1 - iter 396/992 - loss 0.65812865 - time (sec): 33.08 - samples/sec: 1983.87 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-24 17:38:53,652 epoch 1 - iter 495/992 - loss 0.56334832 - time (sec): 41.18 - samples/sec: 1974.74 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-24 17:39:01,801 epoch 1 - iter 594/992 - loss 0.49615806 - time (sec): 49.33 - samples/sec: 1968.64 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-24 17:39:10,421 epoch 1 - iter 693/992 - loss 0.43998124 - time (sec): 57.95 - samples/sec: 1965.03 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-24 17:39:18,883 epoch 1 - iter 792/992 - loss 0.39963914 - time (sec): 66.41 - samples/sec: 1961.65 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-24 17:39:27,283 epoch 1 - iter 891/992 - loss 0.37071134 - time (sec): 74.82 - samples/sec: 1968.84 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-24 17:39:35,696 epoch 1 - iter 990/992 - loss 0.34738778 - time (sec): 83.23 - samples/sec: 1965.86 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-24 17:39:35,876 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-24 17:39:35,876 EPOCH 1 done: loss 0.3469 - lr: 0.000030
354
+ 2023-10-24 17:39:38,923 DEV : loss 0.09140600264072418 - f1-score (micro avg) 0.7223
355
+ 2023-10-24 17:39:38,938 saving best model
356
+ 2023-10-24 17:39:39,407 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-24 17:39:47,548 epoch 2 - iter 99/992 - loss 0.09680147 - time (sec): 8.14 - samples/sec: 2002.81 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-24 17:39:55,858 epoch 2 - iter 198/992 - loss 0.09397801 - time (sec): 16.45 - samples/sec: 1974.74 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-24 17:40:04,370 epoch 2 - iter 297/992 - loss 0.09651916 - time (sec): 24.96 - samples/sec: 1957.39 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-24 17:40:12,929 epoch 2 - iter 396/992 - loss 0.09944484 - time (sec): 33.52 - samples/sec: 1957.00 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-24 17:40:21,301 epoch 2 - iter 495/992 - loss 0.09736309 - time (sec): 41.89 - samples/sec: 1967.03 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-24 17:40:29,549 epoch 2 - iter 594/992 - loss 0.09763263 - time (sec): 50.14 - samples/sec: 1968.89 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-24 17:40:38,016 epoch 2 - iter 693/992 - loss 0.09689609 - time (sec): 58.61 - samples/sec: 1971.33 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-24 17:40:46,350 epoch 2 - iter 792/992 - loss 0.09551141 - time (sec): 66.94 - samples/sec: 1960.12 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-24 17:40:54,691 epoch 2 - iter 891/992 - loss 0.09603742 - time (sec): 75.28 - samples/sec: 1955.14 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-24 17:41:03,174 epoch 2 - iter 990/992 - loss 0.09714532 - time (sec): 83.77 - samples/sec: 1954.54 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-24 17:41:03,320 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-24 17:41:03,320 EPOCH 2 done: loss 0.0971 - lr: 0.000027
369
+ 2023-10-24 17:41:06,418 DEV : loss 0.08006458729505539 - f1-score (micro avg) 0.753
370
+ 2023-10-24 17:41:06,433 saving best model
371
+ 2023-10-24 17:41:07,035 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-24 17:41:15,236 epoch 3 - iter 99/992 - loss 0.06139682 - time (sec): 8.20 - samples/sec: 1973.44 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-24 17:41:23,724 epoch 3 - iter 198/992 - loss 0.06703090 - time (sec): 16.69 - samples/sec: 1974.09 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-24 17:41:31,896 epoch 3 - iter 297/992 - loss 0.07066772 - time (sec): 24.86 - samples/sec: 1965.86 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-24 17:41:39,983 epoch 3 - iter 396/992 - loss 0.06888834 - time (sec): 32.95 - samples/sec: 1966.40 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-24 17:41:48,706 epoch 3 - iter 495/992 - loss 0.06680337 - time (sec): 41.67 - samples/sec: 1977.56 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-24 17:41:57,109 epoch 3 - iter 594/992 - loss 0.06827427 - time (sec): 50.07 - samples/sec: 1972.82 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-24 17:42:05,256 epoch 3 - iter 693/992 - loss 0.06841488 - time (sec): 58.22 - samples/sec: 1970.99 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-24 17:42:13,637 epoch 3 - iter 792/992 - loss 0.06732059 - time (sec): 66.60 - samples/sec: 1972.16 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-24 17:42:22,045 epoch 3 - iter 891/992 - loss 0.06623660 - time (sec): 75.01 - samples/sec: 1970.81 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-24 17:42:30,186 epoch 3 - iter 990/992 - loss 0.06618561 - time (sec): 83.15 - samples/sec: 1969.27 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-24 17:42:30,341 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-24 17:42:30,341 EPOCH 3 done: loss 0.0661 - lr: 0.000023
384
+ 2023-10-24 17:42:33,454 DEV : loss 0.09770625084638596 - f1-score (micro avg) 0.7664
385
+ 2023-10-24 17:42:33,469 saving best model
386
+ 2023-10-24 17:42:34,044 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-24 17:42:42,469 epoch 4 - iter 99/992 - loss 0.04066720 - time (sec): 8.42 - samples/sec: 1876.58 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-24 17:42:51,202 epoch 4 - iter 198/992 - loss 0.04839658 - time (sec): 17.16 - samples/sec: 1910.97 - lr: 0.000023 - momentum: 0.000000
389
+ 2023-10-24 17:42:59,645 epoch 4 - iter 297/992 - loss 0.04694213 - time (sec): 25.60 - samples/sec: 1923.25 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-24 17:43:07,788 epoch 4 - iter 396/992 - loss 0.04727140 - time (sec): 33.74 - samples/sec: 1930.44 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-24 17:43:15,990 epoch 4 - iter 495/992 - loss 0.04760580 - time (sec): 41.95 - samples/sec: 1945.69 - lr: 0.000022 - momentum: 0.000000
392
+ 2023-10-24 17:43:23,619 epoch 4 - iter 594/992 - loss 0.04584277 - time (sec): 49.57 - samples/sec: 1943.44 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-24 17:43:32,148 epoch 4 - iter 693/992 - loss 0.04678695 - time (sec): 58.10 - samples/sec: 1952.99 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-24 17:43:40,536 epoch 4 - iter 792/992 - loss 0.04681106 - time (sec): 66.49 - samples/sec: 1951.01 - lr: 0.000021 - momentum: 0.000000
395
+ 2023-10-24 17:43:48,623 epoch 4 - iter 891/992 - loss 0.04740672 - time (sec): 74.58 - samples/sec: 1961.24 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-24 17:43:57,554 epoch 4 - iter 990/992 - loss 0.04725284 - time (sec): 83.51 - samples/sec: 1959.72 - lr: 0.000020 - momentum: 0.000000
397
+ 2023-10-24 17:43:57,705 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-24 17:43:57,705 EPOCH 4 done: loss 0.0472 - lr: 0.000020
399
+ 2023-10-24 17:44:00,820 DEV : loss 0.1370622217655182 - f1-score (micro avg) 0.7684
400
+ 2023-10-24 17:44:00,835 saving best model
401
+ 2023-10-24 17:44:01,508 ----------------------------------------------------------------------------------------------------
402
+ 2023-10-24 17:44:10,012 epoch 5 - iter 99/992 - loss 0.02951998 - time (sec): 8.50 - samples/sec: 1998.04 - lr: 0.000020 - momentum: 0.000000
403
+ 2023-10-24 17:44:18,292 epoch 5 - iter 198/992 - loss 0.03452251 - time (sec): 16.78 - samples/sec: 1967.20 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-24 17:44:26,827 epoch 5 - iter 297/992 - loss 0.03477441 - time (sec): 25.32 - samples/sec: 1958.56 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-24 17:44:35,053 epoch 5 - iter 396/992 - loss 0.03442328 - time (sec): 33.54 - samples/sec: 1945.10 - lr: 0.000019 - momentum: 0.000000
406
+ 2023-10-24 17:44:43,298 epoch 5 - iter 495/992 - loss 0.03659471 - time (sec): 41.79 - samples/sec: 1960.49 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-24 17:44:51,314 epoch 5 - iter 594/992 - loss 0.03569550 - time (sec): 49.80 - samples/sec: 1964.23 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-24 17:45:00,024 epoch 5 - iter 693/992 - loss 0.03585171 - time (sec): 58.51 - samples/sec: 1961.05 - lr: 0.000018 - momentum: 0.000000
409
+ 2023-10-24 17:45:08,378 epoch 5 - iter 792/992 - loss 0.03741357 - time (sec): 66.87 - samples/sec: 1960.60 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-24 17:45:16,464 epoch 5 - iter 891/992 - loss 0.03829687 - time (sec): 74.96 - samples/sec: 1960.70 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-24 17:45:24,955 epoch 5 - iter 990/992 - loss 0.03723549 - time (sec): 83.45 - samples/sec: 1961.01 - lr: 0.000017 - momentum: 0.000000
412
+ 2023-10-24 17:45:25,122 ----------------------------------------------------------------------------------------------------
413
+ 2023-10-24 17:45:25,122 EPOCH 5 done: loss 0.0372 - lr: 0.000017
414
+ 2023-10-24 17:45:28,550 DEV : loss 0.16291803121566772 - f1-score (micro avg) 0.7765
415
+ 2023-10-24 17:45:28,566 saving best model
416
+ 2023-10-24 17:45:29,156 ----------------------------------------------------------------------------------------------------
417
+ 2023-10-24 17:45:37,741 epoch 6 - iter 99/992 - loss 0.02033797 - time (sec): 8.58 - samples/sec: 1891.50 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-24 17:45:46,162 epoch 6 - iter 198/992 - loss 0.02093798 - time (sec): 17.01 - samples/sec: 1941.89 - lr: 0.000016 - momentum: 0.000000
419
+ 2023-10-24 17:45:54,439 epoch 6 - iter 297/992 - loss 0.02177729 - time (sec): 25.28 - samples/sec: 1960.95 - lr: 0.000016 - momentum: 0.000000
420
+ 2023-10-24 17:46:02,552 epoch 6 - iter 396/992 - loss 0.02426201 - time (sec): 33.40 - samples/sec: 1971.88 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-24 17:46:11,069 epoch 6 - iter 495/992 - loss 0.02614459 - time (sec): 41.91 - samples/sec: 1972.42 - lr: 0.000015 - momentum: 0.000000
422
+ 2023-10-24 17:46:19,360 epoch 6 - iter 594/992 - loss 0.02643793 - time (sec): 50.20 - samples/sec: 1964.61 - lr: 0.000015 - momentum: 0.000000
423
+ 2023-10-24 17:46:27,558 epoch 6 - iter 693/992 - loss 0.02736029 - time (sec): 58.40 - samples/sec: 1959.09 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-24 17:46:35,923 epoch 6 - iter 792/992 - loss 0.02667042 - time (sec): 66.77 - samples/sec: 1958.07 - lr: 0.000014 - momentum: 0.000000
425
+ 2023-10-24 17:46:44,180 epoch 6 - iter 891/992 - loss 0.02785199 - time (sec): 75.02 - samples/sec: 1949.51 - lr: 0.000014 - momentum: 0.000000
426
+ 2023-10-24 17:46:52,411 epoch 6 - iter 990/992 - loss 0.02840540 - time (sec): 83.25 - samples/sec: 1966.07 - lr: 0.000013 - momentum: 0.000000
427
+ 2023-10-24 17:46:52,574 ----------------------------------------------------------------------------------------------------
428
+ 2023-10-24 17:46:52,574 EPOCH 6 done: loss 0.0284 - lr: 0.000013
429
+ 2023-10-24 17:46:55,693 DEV : loss 0.1790854036808014 - f1-score (micro avg) 0.7681
430
+ 2023-10-24 17:46:55,708 ----------------------------------------------------------------------------------------------------
431
+ 2023-10-24 17:47:04,452 epoch 7 - iter 99/992 - loss 0.02418540 - time (sec): 8.74 - samples/sec: 1919.47 - lr: 0.000013 - momentum: 0.000000
432
+ 2023-10-24 17:47:12,542 epoch 7 - iter 198/992 - loss 0.02557997 - time (sec): 16.83 - samples/sec: 1928.44 - lr: 0.000013 - momentum: 0.000000
433
+ 2023-10-24 17:47:20,873 epoch 7 - iter 297/992 - loss 0.02329917 - time (sec): 25.16 - samples/sec: 1936.67 - lr: 0.000012 - momentum: 0.000000
434
+ 2023-10-24 17:47:29,301 epoch 7 - iter 396/992 - loss 0.02067675 - time (sec): 33.59 - samples/sec: 1918.15 - lr: 0.000012 - momentum: 0.000000
435
+ 2023-10-24 17:47:37,478 epoch 7 - iter 495/992 - loss 0.02044117 - time (sec): 41.77 - samples/sec: 1924.13 - lr: 0.000012 - momentum: 0.000000
436
+ 2023-10-24 17:47:46,176 epoch 7 - iter 594/992 - loss 0.02024929 - time (sec): 50.47 - samples/sec: 1938.10 - lr: 0.000011 - momentum: 0.000000
437
+ 2023-10-24 17:47:54,710 epoch 7 - iter 693/992 - loss 0.01948114 - time (sec): 59.00 - samples/sec: 1944.74 - lr: 0.000011 - momentum: 0.000000
438
+ 2023-10-24 17:48:02,922 epoch 7 - iter 792/992 - loss 0.01956172 - time (sec): 67.21 - samples/sec: 1949.30 - lr: 0.000011 - momentum: 0.000000
439
+ 2023-10-24 17:48:11,022 epoch 7 - iter 891/992 - loss 0.01970571 - time (sec): 75.31 - samples/sec: 1956.65 - lr: 0.000010 - momentum: 0.000000
440
+ 2023-10-24 17:48:19,161 epoch 7 - iter 990/992 - loss 0.02041426 - time (sec): 83.45 - samples/sec: 1959.32 - lr: 0.000010 - momentum: 0.000000
441
+ 2023-10-24 17:48:19,336 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-24 17:48:19,336 EPOCH 7 done: loss 0.0204 - lr: 0.000010
443
+ 2023-10-24 17:48:22,769 DEV : loss 0.20467530190944672 - f1-score (micro avg) 0.7616
444
+ 2023-10-24 17:48:22,785 ----------------------------------------------------------------------------------------------------
445
+ 2023-10-24 17:48:31,373 epoch 8 - iter 99/992 - loss 0.01338429 - time (sec): 8.59 - samples/sec: 2020.71 - lr: 0.000010 - momentum: 0.000000
446
+ 2023-10-24 17:48:40,061 epoch 8 - iter 198/992 - loss 0.01222624 - time (sec): 17.27 - samples/sec: 1977.55 - lr: 0.000009 - momentum: 0.000000
447
+ 2023-10-24 17:48:48,204 epoch 8 - iter 297/992 - loss 0.01238322 - time (sec): 25.42 - samples/sec: 1955.48 - lr: 0.000009 - momentum: 0.000000
448
+ 2023-10-24 17:48:56,609 epoch 8 - iter 396/992 - loss 0.01378072 - time (sec): 33.82 - samples/sec: 1945.84 - lr: 0.000009 - momentum: 0.000000
449
+ 2023-10-24 17:49:04,670 epoch 8 - iter 495/992 - loss 0.01464499 - time (sec): 41.88 - samples/sec: 1950.49 - lr: 0.000008 - momentum: 0.000000
450
+ 2023-10-24 17:49:13,145 epoch 8 - iter 594/992 - loss 0.01529863 - time (sec): 50.36 - samples/sec: 1962.49 - lr: 0.000008 - momentum: 0.000000
451
+ 2023-10-24 17:49:21,465 epoch 8 - iter 693/992 - loss 0.01426628 - time (sec): 58.68 - samples/sec: 1964.81 - lr: 0.000008 - momentum: 0.000000
452
+ 2023-10-24 17:49:29,282 epoch 8 - iter 792/992 - loss 0.01434806 - time (sec): 66.50 - samples/sec: 1961.40 - lr: 0.000007 - momentum: 0.000000
453
+ 2023-10-24 17:49:37,726 epoch 8 - iter 891/992 - loss 0.01444871 - time (sec): 74.94 - samples/sec: 1960.50 - lr: 0.000007 - momentum: 0.000000
454
+ 2023-10-24 17:49:46,097 epoch 8 - iter 990/992 - loss 0.01488712 - time (sec): 83.31 - samples/sec: 1964.08 - lr: 0.000007 - momentum: 0.000000
455
+ 2023-10-24 17:49:46,245 ----------------------------------------------------------------------------------------------------
456
+ 2023-10-24 17:49:46,245 EPOCH 8 done: loss 0.0149 - lr: 0.000007
457
+ 2023-10-24 17:49:49,369 DEV : loss 0.23477818071842194 - f1-score (micro avg) 0.7571
458
+ 2023-10-24 17:49:49,384 ----------------------------------------------------------------------------------------------------
459
+ 2023-10-24 17:49:57,571 epoch 9 - iter 99/992 - loss 0.01371693 - time (sec): 8.19 - samples/sec: 1937.71 - lr: 0.000006 - momentum: 0.000000
460
+ 2023-10-24 17:50:05,790 epoch 9 - iter 198/992 - loss 0.01100052 - time (sec): 16.40 - samples/sec: 1927.30 - lr: 0.000006 - momentum: 0.000000
461
+ 2023-10-24 17:50:13,928 epoch 9 - iter 297/992 - loss 0.01149748 - time (sec): 24.54 - samples/sec: 1925.21 - lr: 0.000006 - momentum: 0.000000
462
+ 2023-10-24 17:50:23,074 epoch 9 - iter 396/992 - loss 0.01212931 - time (sec): 33.69 - samples/sec: 1919.27 - lr: 0.000005 - momentum: 0.000000
463
+ 2023-10-24 17:50:31,771 epoch 9 - iter 495/992 - loss 0.01093322 - time (sec): 42.39 - samples/sec: 1929.30 - lr: 0.000005 - momentum: 0.000000
464
+ 2023-10-24 17:50:40,350 epoch 9 - iter 594/992 - loss 0.01065967 - time (sec): 50.97 - samples/sec: 1930.89 - lr: 0.000005 - momentum: 0.000000
465
+ 2023-10-24 17:50:48,388 epoch 9 - iter 693/992 - loss 0.01078237 - time (sec): 59.00 - samples/sec: 1939.66 - lr: 0.000004 - momentum: 0.000000
466
+ 2023-10-24 17:50:56,619 epoch 9 - iter 792/992 - loss 0.01024575 - time (sec): 67.23 - samples/sec: 1942.87 - lr: 0.000004 - momentum: 0.000000
467
+ 2023-10-24 17:51:04,644 epoch 9 - iter 891/992 - loss 0.01058774 - time (sec): 75.26 - samples/sec: 1951.24 - lr: 0.000004 - momentum: 0.000000
468
+ 2023-10-24 17:51:12,810 epoch 9 - iter 990/992 - loss 0.01091116 - time (sec): 83.43 - samples/sec: 1962.25 - lr: 0.000003 - momentum: 0.000000
469
+ 2023-10-24 17:51:12,957 ----------------------------------------------------------------------------------------------------
470
+ 2023-10-24 17:51:12,957 EPOCH 9 done: loss 0.0109 - lr: 0.000003
471
+ 2023-10-24 17:51:16,412 DEV : loss 0.23431342840194702 - f1-score (micro avg) 0.7708
472
+ 2023-10-24 17:51:16,427 ----------------------------------------------------------------------------------------------------
473
+ 2023-10-24 17:51:24,444 epoch 10 - iter 99/992 - loss 0.00607875 - time (sec): 8.02 - samples/sec: 2022.08 - lr: 0.000003 - momentum: 0.000000
474
+ 2023-10-24 17:51:32,702 epoch 10 - iter 198/992 - loss 0.00533387 - time (sec): 16.27 - samples/sec: 1987.29 - lr: 0.000003 - momentum: 0.000000
475
+ 2023-10-24 17:51:41,170 epoch 10 - iter 297/992 - loss 0.00635844 - time (sec): 24.74 - samples/sec: 1984.33 - lr: 0.000002 - momentum: 0.000000
476
+ 2023-10-24 17:51:49,635 epoch 10 - iter 396/992 - loss 0.00826920 - time (sec): 33.21 - samples/sec: 1992.73 - lr: 0.000002 - momentum: 0.000000
477
+ 2023-10-24 17:51:57,861 epoch 10 - iter 495/992 - loss 0.00834489 - time (sec): 41.43 - samples/sec: 1987.29 - lr: 0.000002 - momentum: 0.000000
478
+ 2023-10-24 17:52:06,239 epoch 10 - iter 594/992 - loss 0.00777999 - time (sec): 49.81 - samples/sec: 1972.40 - lr: 0.000001 - momentum: 0.000000
479
+ 2023-10-24 17:52:14,639 epoch 10 - iter 693/992 - loss 0.00812146 - time (sec): 58.21 - samples/sec: 1968.69 - lr: 0.000001 - momentum: 0.000000
480
+ 2023-10-24 17:52:22,702 epoch 10 - iter 792/992 - loss 0.00755783 - time (sec): 66.27 - samples/sec: 1964.62 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-24 17:52:31,219 epoch 10 - iter 891/992 - loss 0.00784551 - time (sec): 74.79 - samples/sec: 1962.71 - lr: 0.000000 - momentum: 0.000000
482
+ 2023-10-24 17:52:39,702 epoch 10 - iter 990/992 - loss 0.00776579 - time (sec): 83.27 - samples/sec: 1964.99 - lr: 0.000000 - momentum: 0.000000
483
+ 2023-10-24 17:52:39,872 ----------------------------------------------------------------------------------------------------
484
+ 2023-10-24 17:52:39,872 EPOCH 10 done: loss 0.0078 - lr: 0.000000
485
+ 2023-10-24 17:52:42,994 DEV : loss 0.2393815815448761 - f1-score (micro avg) 0.7619
486
+ 2023-10-24 17:52:43,482 ----------------------------------------------------------------------------------------------------
487
+ 2023-10-24 17:52:43,483 Loading model from best epoch ...
488
+ 2023-10-24 17:52:44,969 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
489
+ 2023-10-24 17:52:48,050
490
+ Results:
491
+ - F-score (micro) 0.7854
492
+ - F-score (macro) 0.7033
493
+ - Accuracy 0.6628
494
+
495
+ By class:
496
+ precision recall f1-score support
497
+
498
+ LOC 0.8130 0.8565 0.8342 655
499
+ PER 0.7377 0.8072 0.7709 223
500
+ ORG 0.6386 0.4173 0.5048 127
501
+
502
+ micro avg 0.7807 0.7900 0.7854 1005
503
+ macro avg 0.7298 0.6937 0.7033 1005
504
+ weighted avg 0.7743 0.7900 0.7785 1005
505
+
506
+ 2023-10-24 17:52:48,050 ----------------------------------------------------------------------------------------------------