Upload ./training.log with huggingface_hub
Browse files- training.log +506 -0
training.log
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 17:38:12,465 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 17:38:12,466 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 17:38:12,466 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 17:38:12,467 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 17:38:12,467 Train: 7936 sentences
|
319 |
+
2023-10-24 17:38:12,467 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 17:38:12,467 Training Params:
|
322 |
+
2023-10-24 17:38:12,467 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 17:38:12,467 - mini_batch_size: "8"
|
324 |
+
2023-10-24 17:38:12,467 - max_epochs: "10"
|
325 |
+
2023-10-24 17:38:12,467 - shuffle: "True"
|
326 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 17:38:12,467 Plugins:
|
328 |
+
2023-10-24 17:38:12,467 - TensorboardLogger
|
329 |
+
2023-10-24 17:38:12,467 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 17:38:12,467 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 17:38:12,467 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 17:38:12,467 Computation:
|
335 |
+
2023-10-24 17:38:12,467 - compute on device: cuda:0
|
336 |
+
2023-10-24 17:38:12,467 - embedding storage: none
|
337 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 17:38:12,467 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 17:38:12,467 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 17:38:12,467 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 17:38:20,974 epoch 1 - iter 99/992 - loss 1.74525625 - time (sec): 8.51 - samples/sec: 2051.05 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 17:38:29,111 epoch 1 - iter 198/992 - loss 1.08863551 - time (sec): 16.64 - samples/sec: 2023.06 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 17:38:37,169 epoch 1 - iter 297/992 - loss 0.81797787 - time (sec): 24.70 - samples/sec: 1987.76 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 17:38:45,550 epoch 1 - iter 396/992 - loss 0.65812865 - time (sec): 33.08 - samples/sec: 1983.87 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 17:38:53,652 epoch 1 - iter 495/992 - loss 0.56334832 - time (sec): 41.18 - samples/sec: 1974.74 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 17:39:01,801 epoch 1 - iter 594/992 - loss 0.49615806 - time (sec): 49.33 - samples/sec: 1968.64 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 17:39:10,421 epoch 1 - iter 693/992 - loss 0.43998124 - time (sec): 57.95 - samples/sec: 1965.03 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 17:39:18,883 epoch 1 - iter 792/992 - loss 0.39963914 - time (sec): 66.41 - samples/sec: 1961.65 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 17:39:27,283 epoch 1 - iter 891/992 - loss 0.37071134 - time (sec): 74.82 - samples/sec: 1968.84 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 17:39:35,696 epoch 1 - iter 990/992 - loss 0.34738778 - time (sec): 83.23 - samples/sec: 1965.86 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 17:39:35,876 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 17:39:35,876 EPOCH 1 done: loss 0.3469 - lr: 0.000030
|
354 |
+
2023-10-24 17:39:38,923 DEV : loss 0.09140600264072418 - f1-score (micro avg) 0.7223
|
355 |
+
2023-10-24 17:39:38,938 saving best model
|
356 |
+
2023-10-24 17:39:39,407 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 17:39:47,548 epoch 2 - iter 99/992 - loss 0.09680147 - time (sec): 8.14 - samples/sec: 2002.81 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 17:39:55,858 epoch 2 - iter 198/992 - loss 0.09397801 - time (sec): 16.45 - samples/sec: 1974.74 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 17:40:04,370 epoch 2 - iter 297/992 - loss 0.09651916 - time (sec): 24.96 - samples/sec: 1957.39 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 17:40:12,929 epoch 2 - iter 396/992 - loss 0.09944484 - time (sec): 33.52 - samples/sec: 1957.00 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 17:40:21,301 epoch 2 - iter 495/992 - loss 0.09736309 - time (sec): 41.89 - samples/sec: 1967.03 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 17:40:29,549 epoch 2 - iter 594/992 - loss 0.09763263 - time (sec): 50.14 - samples/sec: 1968.89 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 17:40:38,016 epoch 2 - iter 693/992 - loss 0.09689609 - time (sec): 58.61 - samples/sec: 1971.33 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 17:40:46,350 epoch 2 - iter 792/992 - loss 0.09551141 - time (sec): 66.94 - samples/sec: 1960.12 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 17:40:54,691 epoch 2 - iter 891/992 - loss 0.09603742 - time (sec): 75.28 - samples/sec: 1955.14 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 17:41:03,174 epoch 2 - iter 990/992 - loss 0.09714532 - time (sec): 83.77 - samples/sec: 1954.54 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 17:41:03,320 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 17:41:03,320 EPOCH 2 done: loss 0.0971 - lr: 0.000027
|
369 |
+
2023-10-24 17:41:06,418 DEV : loss 0.08006458729505539 - f1-score (micro avg) 0.753
|
370 |
+
2023-10-24 17:41:06,433 saving best model
|
371 |
+
2023-10-24 17:41:07,035 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 17:41:15,236 epoch 3 - iter 99/992 - loss 0.06139682 - time (sec): 8.20 - samples/sec: 1973.44 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 17:41:23,724 epoch 3 - iter 198/992 - loss 0.06703090 - time (sec): 16.69 - samples/sec: 1974.09 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 17:41:31,896 epoch 3 - iter 297/992 - loss 0.07066772 - time (sec): 24.86 - samples/sec: 1965.86 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 17:41:39,983 epoch 3 - iter 396/992 - loss 0.06888834 - time (sec): 32.95 - samples/sec: 1966.40 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 17:41:48,706 epoch 3 - iter 495/992 - loss 0.06680337 - time (sec): 41.67 - samples/sec: 1977.56 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 17:41:57,109 epoch 3 - iter 594/992 - loss 0.06827427 - time (sec): 50.07 - samples/sec: 1972.82 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 17:42:05,256 epoch 3 - iter 693/992 - loss 0.06841488 - time (sec): 58.22 - samples/sec: 1970.99 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 17:42:13,637 epoch 3 - iter 792/992 - loss 0.06732059 - time (sec): 66.60 - samples/sec: 1972.16 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 17:42:22,045 epoch 3 - iter 891/992 - loss 0.06623660 - time (sec): 75.01 - samples/sec: 1970.81 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 17:42:30,186 epoch 3 - iter 990/992 - loss 0.06618561 - time (sec): 83.15 - samples/sec: 1969.27 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 17:42:30,341 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 17:42:30,341 EPOCH 3 done: loss 0.0661 - lr: 0.000023
|
384 |
+
2023-10-24 17:42:33,454 DEV : loss 0.09770625084638596 - f1-score (micro avg) 0.7664
|
385 |
+
2023-10-24 17:42:33,469 saving best model
|
386 |
+
2023-10-24 17:42:34,044 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 17:42:42,469 epoch 4 - iter 99/992 - loss 0.04066720 - time (sec): 8.42 - samples/sec: 1876.58 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 17:42:51,202 epoch 4 - iter 198/992 - loss 0.04839658 - time (sec): 17.16 - samples/sec: 1910.97 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-24 17:42:59,645 epoch 4 - iter 297/992 - loss 0.04694213 - time (sec): 25.60 - samples/sec: 1923.25 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 17:43:07,788 epoch 4 - iter 396/992 - loss 0.04727140 - time (sec): 33.74 - samples/sec: 1930.44 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 17:43:15,990 epoch 4 - iter 495/992 - loss 0.04760580 - time (sec): 41.95 - samples/sec: 1945.69 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-24 17:43:23,619 epoch 4 - iter 594/992 - loss 0.04584277 - time (sec): 49.57 - samples/sec: 1943.44 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 17:43:32,148 epoch 4 - iter 693/992 - loss 0.04678695 - time (sec): 58.10 - samples/sec: 1952.99 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 17:43:40,536 epoch 4 - iter 792/992 - loss 0.04681106 - time (sec): 66.49 - samples/sec: 1951.01 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-24 17:43:48,623 epoch 4 - iter 891/992 - loss 0.04740672 - time (sec): 74.58 - samples/sec: 1961.24 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 17:43:57,554 epoch 4 - iter 990/992 - loss 0.04725284 - time (sec): 83.51 - samples/sec: 1959.72 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-24 17:43:57,705 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 17:43:57,705 EPOCH 4 done: loss 0.0472 - lr: 0.000020
|
399 |
+
2023-10-24 17:44:00,820 DEV : loss 0.1370622217655182 - f1-score (micro avg) 0.7684
|
400 |
+
2023-10-24 17:44:00,835 saving best model
|
401 |
+
2023-10-24 17:44:01,508 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-24 17:44:10,012 epoch 5 - iter 99/992 - loss 0.02951998 - time (sec): 8.50 - samples/sec: 1998.04 - lr: 0.000020 - momentum: 0.000000
|
403 |
+
2023-10-24 17:44:18,292 epoch 5 - iter 198/992 - loss 0.03452251 - time (sec): 16.78 - samples/sec: 1967.20 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 17:44:26,827 epoch 5 - iter 297/992 - loss 0.03477441 - time (sec): 25.32 - samples/sec: 1958.56 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 17:44:35,053 epoch 5 - iter 396/992 - loss 0.03442328 - time (sec): 33.54 - samples/sec: 1945.10 - lr: 0.000019 - momentum: 0.000000
|
406 |
+
2023-10-24 17:44:43,298 epoch 5 - iter 495/992 - loss 0.03659471 - time (sec): 41.79 - samples/sec: 1960.49 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 17:44:51,314 epoch 5 - iter 594/992 - loss 0.03569550 - time (sec): 49.80 - samples/sec: 1964.23 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 17:45:00,024 epoch 5 - iter 693/992 - loss 0.03585171 - time (sec): 58.51 - samples/sec: 1961.05 - lr: 0.000018 - momentum: 0.000000
|
409 |
+
2023-10-24 17:45:08,378 epoch 5 - iter 792/992 - loss 0.03741357 - time (sec): 66.87 - samples/sec: 1960.60 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 17:45:16,464 epoch 5 - iter 891/992 - loss 0.03829687 - time (sec): 74.96 - samples/sec: 1960.70 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 17:45:24,955 epoch 5 - iter 990/992 - loss 0.03723549 - time (sec): 83.45 - samples/sec: 1961.01 - lr: 0.000017 - momentum: 0.000000
|
412 |
+
2023-10-24 17:45:25,122 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-24 17:45:25,122 EPOCH 5 done: loss 0.0372 - lr: 0.000017
|
414 |
+
2023-10-24 17:45:28,550 DEV : loss 0.16291803121566772 - f1-score (micro avg) 0.7765
|
415 |
+
2023-10-24 17:45:28,566 saving best model
|
416 |
+
2023-10-24 17:45:29,156 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-24 17:45:37,741 epoch 6 - iter 99/992 - loss 0.02033797 - time (sec): 8.58 - samples/sec: 1891.50 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 17:45:46,162 epoch 6 - iter 198/992 - loss 0.02093798 - time (sec): 17.01 - samples/sec: 1941.89 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-24 17:45:54,439 epoch 6 - iter 297/992 - loss 0.02177729 - time (sec): 25.28 - samples/sec: 1960.95 - lr: 0.000016 - momentum: 0.000000
|
420 |
+
2023-10-24 17:46:02,552 epoch 6 - iter 396/992 - loss 0.02426201 - time (sec): 33.40 - samples/sec: 1971.88 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 17:46:11,069 epoch 6 - iter 495/992 - loss 0.02614459 - time (sec): 41.91 - samples/sec: 1972.42 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-24 17:46:19,360 epoch 6 - iter 594/992 - loss 0.02643793 - time (sec): 50.20 - samples/sec: 1964.61 - lr: 0.000015 - momentum: 0.000000
|
423 |
+
2023-10-24 17:46:27,558 epoch 6 - iter 693/992 - loss 0.02736029 - time (sec): 58.40 - samples/sec: 1959.09 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 17:46:35,923 epoch 6 - iter 792/992 - loss 0.02667042 - time (sec): 66.77 - samples/sec: 1958.07 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-24 17:46:44,180 epoch 6 - iter 891/992 - loss 0.02785199 - time (sec): 75.02 - samples/sec: 1949.51 - lr: 0.000014 - momentum: 0.000000
|
426 |
+
2023-10-24 17:46:52,411 epoch 6 - iter 990/992 - loss 0.02840540 - time (sec): 83.25 - samples/sec: 1966.07 - lr: 0.000013 - momentum: 0.000000
|
427 |
+
2023-10-24 17:46:52,574 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-24 17:46:52,574 EPOCH 6 done: loss 0.0284 - lr: 0.000013
|
429 |
+
2023-10-24 17:46:55,693 DEV : loss 0.1790854036808014 - f1-score (micro avg) 0.7681
|
430 |
+
2023-10-24 17:46:55,708 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-24 17:47:04,452 epoch 7 - iter 99/992 - loss 0.02418540 - time (sec): 8.74 - samples/sec: 1919.47 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-24 17:47:12,542 epoch 7 - iter 198/992 - loss 0.02557997 - time (sec): 16.83 - samples/sec: 1928.44 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-24 17:47:20,873 epoch 7 - iter 297/992 - loss 0.02329917 - time (sec): 25.16 - samples/sec: 1936.67 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 17:47:29,301 epoch 7 - iter 396/992 - loss 0.02067675 - time (sec): 33.59 - samples/sec: 1918.15 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-24 17:47:37,478 epoch 7 - iter 495/992 - loss 0.02044117 - time (sec): 41.77 - samples/sec: 1924.13 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-24 17:47:46,176 epoch 7 - iter 594/992 - loss 0.02024929 - time (sec): 50.47 - samples/sec: 1938.10 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 17:47:54,710 epoch 7 - iter 693/992 - loss 0.01948114 - time (sec): 59.00 - samples/sec: 1944.74 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-24 17:48:02,922 epoch 7 - iter 792/992 - loss 0.01956172 - time (sec): 67.21 - samples/sec: 1949.30 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-24 17:48:11,022 epoch 7 - iter 891/992 - loss 0.01970571 - time (sec): 75.31 - samples/sec: 1956.65 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-24 17:48:19,161 epoch 7 - iter 990/992 - loss 0.02041426 - time (sec): 83.45 - samples/sec: 1959.32 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-24 17:48:19,336 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-24 17:48:19,336 EPOCH 7 done: loss 0.0204 - lr: 0.000010
|
443 |
+
2023-10-24 17:48:22,769 DEV : loss 0.20467530190944672 - f1-score (micro avg) 0.7616
|
444 |
+
2023-10-24 17:48:22,785 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-24 17:48:31,373 epoch 8 - iter 99/992 - loss 0.01338429 - time (sec): 8.59 - samples/sec: 2020.71 - lr: 0.000010 - momentum: 0.000000
|
446 |
+
2023-10-24 17:48:40,061 epoch 8 - iter 198/992 - loss 0.01222624 - time (sec): 17.27 - samples/sec: 1977.55 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-24 17:48:48,204 epoch 8 - iter 297/992 - loss 0.01238322 - time (sec): 25.42 - samples/sec: 1955.48 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-24 17:48:56,609 epoch 8 - iter 396/992 - loss 0.01378072 - time (sec): 33.82 - samples/sec: 1945.84 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-24 17:49:04,670 epoch 8 - iter 495/992 - loss 0.01464499 - time (sec): 41.88 - samples/sec: 1950.49 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-24 17:49:13,145 epoch 8 - iter 594/992 - loss 0.01529863 - time (sec): 50.36 - samples/sec: 1962.49 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-24 17:49:21,465 epoch 8 - iter 693/992 - loss 0.01426628 - time (sec): 58.68 - samples/sec: 1964.81 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-24 17:49:29,282 epoch 8 - iter 792/992 - loss 0.01434806 - time (sec): 66.50 - samples/sec: 1961.40 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-24 17:49:37,726 epoch 8 - iter 891/992 - loss 0.01444871 - time (sec): 74.94 - samples/sec: 1960.50 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-24 17:49:46,097 epoch 8 - iter 990/992 - loss 0.01488712 - time (sec): 83.31 - samples/sec: 1964.08 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-24 17:49:46,245 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-24 17:49:46,245 EPOCH 8 done: loss 0.0149 - lr: 0.000007
|
457 |
+
2023-10-24 17:49:49,369 DEV : loss 0.23477818071842194 - f1-score (micro avg) 0.7571
|
458 |
+
2023-10-24 17:49:49,384 ----------------------------------------------------------------------------------------------------
|
459 |
+
2023-10-24 17:49:57,571 epoch 9 - iter 99/992 - loss 0.01371693 - time (sec): 8.19 - samples/sec: 1937.71 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-24 17:50:05,790 epoch 9 - iter 198/992 - loss 0.01100052 - time (sec): 16.40 - samples/sec: 1927.30 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-24 17:50:13,928 epoch 9 - iter 297/992 - loss 0.01149748 - time (sec): 24.54 - samples/sec: 1925.21 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-24 17:50:23,074 epoch 9 - iter 396/992 - loss 0.01212931 - time (sec): 33.69 - samples/sec: 1919.27 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-24 17:50:31,771 epoch 9 - iter 495/992 - loss 0.01093322 - time (sec): 42.39 - samples/sec: 1929.30 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-24 17:50:40,350 epoch 9 - iter 594/992 - loss 0.01065967 - time (sec): 50.97 - samples/sec: 1930.89 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-24 17:50:48,388 epoch 9 - iter 693/992 - loss 0.01078237 - time (sec): 59.00 - samples/sec: 1939.66 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-24 17:50:56,619 epoch 9 - iter 792/992 - loss 0.01024575 - time (sec): 67.23 - samples/sec: 1942.87 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-24 17:51:04,644 epoch 9 - iter 891/992 - loss 0.01058774 - time (sec): 75.26 - samples/sec: 1951.24 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-24 17:51:12,810 epoch 9 - iter 990/992 - loss 0.01091116 - time (sec): 83.43 - samples/sec: 1962.25 - lr: 0.000003 - momentum: 0.000000
|
469 |
+
2023-10-24 17:51:12,957 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-24 17:51:12,957 EPOCH 9 done: loss 0.0109 - lr: 0.000003
|
471 |
+
2023-10-24 17:51:16,412 DEV : loss 0.23431342840194702 - f1-score (micro avg) 0.7708
|
472 |
+
2023-10-24 17:51:16,427 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-24 17:51:24,444 epoch 10 - iter 99/992 - loss 0.00607875 - time (sec): 8.02 - samples/sec: 2022.08 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-24 17:51:32,702 epoch 10 - iter 198/992 - loss 0.00533387 - time (sec): 16.27 - samples/sec: 1987.29 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-24 17:51:41,170 epoch 10 - iter 297/992 - loss 0.00635844 - time (sec): 24.74 - samples/sec: 1984.33 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 17:51:49,635 epoch 10 - iter 396/992 - loss 0.00826920 - time (sec): 33.21 - samples/sec: 1992.73 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 17:51:57,861 epoch 10 - iter 495/992 - loss 0.00834489 - time (sec): 41.43 - samples/sec: 1987.29 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-24 17:52:06,239 epoch 10 - iter 594/992 - loss 0.00777999 - time (sec): 49.81 - samples/sec: 1972.40 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 17:52:14,639 epoch 10 - iter 693/992 - loss 0.00812146 - time (sec): 58.21 - samples/sec: 1968.69 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-24 17:52:22,702 epoch 10 - iter 792/992 - loss 0.00755783 - time (sec): 66.27 - samples/sec: 1964.62 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-24 17:52:31,219 epoch 10 - iter 891/992 - loss 0.00784551 - time (sec): 74.79 - samples/sec: 1962.71 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-24 17:52:39,702 epoch 10 - iter 990/992 - loss 0.00776579 - time (sec): 83.27 - samples/sec: 1964.99 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-24 17:52:39,872 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-24 17:52:39,872 EPOCH 10 done: loss 0.0078 - lr: 0.000000
|
485 |
+
2023-10-24 17:52:42,994 DEV : loss 0.2393815815448761 - f1-score (micro avg) 0.7619
|
486 |
+
2023-10-24 17:52:43,482 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-24 17:52:43,483 Loading model from best epoch ...
|
488 |
+
2023-10-24 17:52:44,969 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
489 |
+
2023-10-24 17:52:48,050
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.7854
|
492 |
+
- F-score (macro) 0.7033
|
493 |
+
- Accuracy 0.6628
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
LOC 0.8130 0.8565 0.8342 655
|
499 |
+
PER 0.7377 0.8072 0.7709 223
|
500 |
+
ORG 0.6386 0.4173 0.5048 127
|
501 |
+
|
502 |
+
micro avg 0.7807 0.7900 0.7854 1005
|
503 |
+
macro avg 0.7298 0.6937 0.7033 1005
|
504 |
+
weighted avg 0.7743 0.7900 0.7785 1005
|
505 |
+
|
506 |
+
2023-10-24 17:52:48,050 ----------------------------------------------------------------------------------------------------
|