stefan-it commited on
Commit
25599df
1 Parent(s): e4e581c

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +504 -0
training.log ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-24 16:25:58,391 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-24 16:25:58,392 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-24 16:25:58,392 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-24 16:25:58,393 MultiCorpus: 7936 train + 992 dev + 992 test sentences
316
+ - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
317
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-24 16:25:58,393 Train: 7936 sentences
319
+ 2023-10-24 16:25:58,393 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-24 16:25:58,393 Training Params:
322
+ 2023-10-24 16:25:58,393 - learning_rate: "3e-05"
323
+ 2023-10-24 16:25:58,393 - mini_batch_size: "8"
324
+ 2023-10-24 16:25:58,393 - max_epochs: "10"
325
+ 2023-10-24 16:25:58,393 - shuffle: "True"
326
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-24 16:25:58,393 Plugins:
328
+ 2023-10-24 16:25:58,393 - TensorboardLogger
329
+ 2023-10-24 16:25:58,393 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-24 16:25:58,393 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-24 16:25:58,393 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-24 16:25:58,393 Computation:
335
+ 2023-10-24 16:25:58,393 - compute on device: cuda:0
336
+ 2023-10-24 16:25:58,393 - embedding storage: none
337
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-24 16:25:58,393 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
339
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-24 16:25:58,393 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-24 16:26:06,342 epoch 1 - iter 99/992 - loss 1.84117328 - time (sec): 7.95 - samples/sec: 1981.13 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-24 16:26:14,855 epoch 1 - iter 198/992 - loss 1.10138130 - time (sec): 16.46 - samples/sec: 1996.76 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-24 16:26:23,310 epoch 1 - iter 297/992 - loss 0.81486082 - time (sec): 24.92 - samples/sec: 2001.63 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-24 16:26:31,932 epoch 1 - iter 396/992 - loss 0.64687710 - time (sec): 33.54 - samples/sec: 2015.43 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-24 16:26:39,914 epoch 1 - iter 495/992 - loss 0.55583741 - time (sec): 41.52 - samples/sec: 1997.30 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-24 16:26:48,202 epoch 1 - iter 594/992 - loss 0.48695047 - time (sec): 49.81 - samples/sec: 1991.39 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-24 16:26:56,126 epoch 1 - iter 693/992 - loss 0.44276893 - time (sec): 57.73 - samples/sec: 1982.49 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-24 16:27:04,291 epoch 1 - iter 792/992 - loss 0.40513633 - time (sec): 65.90 - samples/sec: 1978.17 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-24 16:27:13,005 epoch 1 - iter 891/992 - loss 0.37397311 - time (sec): 74.61 - samples/sec: 1975.31 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-24 16:27:21,230 epoch 1 - iter 990/992 - loss 0.35036716 - time (sec): 82.84 - samples/sec: 1973.58 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-24 16:27:21,425 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-24 16:27:21,425 EPOCH 1 done: loss 0.3496 - lr: 0.000030
354
+ 2023-10-24 16:27:24,457 DEV : loss 0.09255984425544739 - f1-score (micro avg) 0.7088
355
+ 2023-10-24 16:27:24,472 saving best model
356
+ 2023-10-24 16:27:24,943 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-24 16:27:33,171 epoch 2 - iter 99/992 - loss 0.10446376 - time (sec): 8.23 - samples/sec: 2021.90 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-24 16:27:41,671 epoch 2 - iter 198/992 - loss 0.10760078 - time (sec): 16.73 - samples/sec: 1971.38 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-24 16:27:49,862 epoch 2 - iter 297/992 - loss 0.10514711 - time (sec): 24.92 - samples/sec: 1966.95 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-24 16:27:58,454 epoch 2 - iter 396/992 - loss 0.10491517 - time (sec): 33.51 - samples/sec: 1965.67 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-24 16:28:06,674 epoch 2 - iter 495/992 - loss 0.10303159 - time (sec): 41.73 - samples/sec: 1962.28 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-24 16:28:15,062 epoch 2 - iter 594/992 - loss 0.10348052 - time (sec): 50.12 - samples/sec: 1961.05 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-24 16:28:23,656 epoch 2 - iter 693/992 - loss 0.10177488 - time (sec): 58.71 - samples/sec: 1964.56 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-24 16:28:32,361 epoch 2 - iter 792/992 - loss 0.10172499 - time (sec): 67.42 - samples/sec: 1957.58 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-24 16:28:40,452 epoch 2 - iter 891/992 - loss 0.10087184 - time (sec): 75.51 - samples/sec: 1956.03 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-24 16:28:48,445 epoch 2 - iter 990/992 - loss 0.09922248 - time (sec): 83.50 - samples/sec: 1961.60 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-24 16:28:48,581 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-24 16:28:48,581 EPOCH 2 done: loss 0.0993 - lr: 0.000027
369
+ 2023-10-24 16:28:51,691 DEV : loss 0.09279114753007889 - f1-score (micro avg) 0.7279
370
+ 2023-10-24 16:28:51,706 saving best model
371
+ 2023-10-24 16:28:52,375 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-24 16:29:01,133 epoch 3 - iter 99/992 - loss 0.07605989 - time (sec): 8.76 - samples/sec: 1917.87 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-24 16:29:09,138 epoch 3 - iter 198/992 - loss 0.07095587 - time (sec): 16.76 - samples/sec: 1941.89 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-24 16:29:17,484 epoch 3 - iter 297/992 - loss 0.06933994 - time (sec): 25.11 - samples/sec: 1968.54 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-24 16:29:25,795 epoch 3 - iter 396/992 - loss 0.06953657 - time (sec): 33.42 - samples/sec: 1984.05 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-24 16:29:34,059 epoch 3 - iter 495/992 - loss 0.06985299 - time (sec): 41.68 - samples/sec: 1966.49 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-24 16:29:42,455 epoch 3 - iter 594/992 - loss 0.07018513 - time (sec): 50.08 - samples/sec: 1957.35 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-24 16:29:50,658 epoch 3 - iter 693/992 - loss 0.06885542 - time (sec): 58.28 - samples/sec: 1963.79 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-24 16:29:58,686 epoch 3 - iter 792/992 - loss 0.06830171 - time (sec): 66.31 - samples/sec: 1969.72 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-24 16:30:06,906 epoch 3 - iter 891/992 - loss 0.06866294 - time (sec): 74.53 - samples/sec: 1970.78 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-24 16:30:15,479 epoch 3 - iter 990/992 - loss 0.06874566 - time (sec): 83.10 - samples/sec: 1970.06 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-24 16:30:15,620 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-24 16:30:15,621 EPOCH 3 done: loss 0.0687 - lr: 0.000023
384
+ 2023-10-24 16:30:19,034 DEV : loss 0.10878178477287292 - f1-score (micro avg) 0.7642
385
+ 2023-10-24 16:30:19,049 saving best model
386
+ 2023-10-24 16:30:19,637 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-24 16:30:28,163 epoch 4 - iter 99/992 - loss 0.04392941 - time (sec): 8.52 - samples/sec: 1987.79 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-24 16:30:36,328 epoch 4 - iter 198/992 - loss 0.04639438 - time (sec): 16.69 - samples/sec: 1952.85 - lr: 0.000023 - momentum: 0.000000
389
+ 2023-10-24 16:30:44,969 epoch 4 - iter 297/992 - loss 0.04736008 - time (sec): 25.33 - samples/sec: 1973.99 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-24 16:30:53,150 epoch 4 - iter 396/992 - loss 0.04778313 - time (sec): 33.51 - samples/sec: 1968.61 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-24 16:31:01,433 epoch 4 - iter 495/992 - loss 0.04940814 - time (sec): 41.79 - samples/sec: 1968.99 - lr: 0.000022 - momentum: 0.000000
392
+ 2023-10-24 16:31:09,947 epoch 4 - iter 594/992 - loss 0.04959742 - time (sec): 50.31 - samples/sec: 1965.94 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-24 16:31:17,969 epoch 4 - iter 693/992 - loss 0.04901512 - time (sec): 58.33 - samples/sec: 1965.80 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-24 16:31:26,565 epoch 4 - iter 792/992 - loss 0.05033168 - time (sec): 66.93 - samples/sec: 1958.37 - lr: 0.000021 - momentum: 0.000000
395
+ 2023-10-24 16:31:34,725 epoch 4 - iter 891/992 - loss 0.05069359 - time (sec): 75.09 - samples/sec: 1965.14 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-24 16:31:42,979 epoch 4 - iter 990/992 - loss 0.04985751 - time (sec): 83.34 - samples/sec: 1964.11 - lr: 0.000020 - momentum: 0.000000
397
+ 2023-10-24 16:31:43,127 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-24 16:31:43,127 EPOCH 4 done: loss 0.0498 - lr: 0.000020
399
+ 2023-10-24 16:31:46,247 DEV : loss 0.12828028202056885 - f1-score (micro avg) 0.7563
400
+ 2023-10-24 16:31:46,262 ----------------------------------------------------------------------------------------------------
401
+ 2023-10-24 16:31:54,899 epoch 5 - iter 99/992 - loss 0.03290449 - time (sec): 8.64 - samples/sec: 1954.44 - lr: 0.000020 - momentum: 0.000000
402
+ 2023-10-24 16:32:03,134 epoch 5 - iter 198/992 - loss 0.03381169 - time (sec): 16.87 - samples/sec: 1924.32 - lr: 0.000019 - momentum: 0.000000
403
+ 2023-10-24 16:32:11,746 epoch 5 - iter 297/992 - loss 0.03697508 - time (sec): 25.48 - samples/sec: 1942.23 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-24 16:32:19,881 epoch 5 - iter 396/992 - loss 0.03788595 - time (sec): 33.62 - samples/sec: 1937.06 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-24 16:32:28,085 epoch 5 - iter 495/992 - loss 0.03765117 - time (sec): 41.82 - samples/sec: 1939.00 - lr: 0.000018 - momentum: 0.000000
406
+ 2023-10-24 16:32:36,427 epoch 5 - iter 594/992 - loss 0.03686130 - time (sec): 50.16 - samples/sec: 1949.84 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-24 16:32:44,439 epoch 5 - iter 693/992 - loss 0.03765527 - time (sec): 58.18 - samples/sec: 1951.39 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-24 16:32:52,622 epoch 5 - iter 792/992 - loss 0.03734430 - time (sec): 66.36 - samples/sec: 1952.28 - lr: 0.000017 - momentum: 0.000000
409
+ 2023-10-24 16:33:01,356 epoch 5 - iter 891/992 - loss 0.03750261 - time (sec): 75.09 - samples/sec: 1957.40 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-24 16:33:09,599 epoch 5 - iter 990/992 - loss 0.03737905 - time (sec): 83.34 - samples/sec: 1964.25 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-24 16:33:09,763 ----------------------------------------------------------------------------------------------------
412
+ 2023-10-24 16:33:09,763 EPOCH 5 done: loss 0.0373 - lr: 0.000017
413
+ 2023-10-24 16:33:13,201 DEV : loss 0.16802850365638733 - f1-score (micro avg) 0.7613
414
+ 2023-10-24 16:33:13,216 ----------------------------------------------------------------------------------------------------
415
+ 2023-10-24 16:33:21,537 epoch 6 - iter 99/992 - loss 0.02894776 - time (sec): 8.32 - samples/sec: 1949.39 - lr: 0.000016 - momentum: 0.000000
416
+ 2023-10-24 16:33:29,913 epoch 6 - iter 198/992 - loss 0.02934176 - time (sec): 16.70 - samples/sec: 1933.41 - lr: 0.000016 - momentum: 0.000000
417
+ 2023-10-24 16:33:38,373 epoch 6 - iter 297/992 - loss 0.02785056 - time (sec): 25.16 - samples/sec: 1915.53 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-24 16:33:46,336 epoch 6 - iter 396/992 - loss 0.02582194 - time (sec): 33.12 - samples/sec: 1931.95 - lr: 0.000015 - momentum: 0.000000
419
+ 2023-10-24 16:33:54,785 epoch 6 - iter 495/992 - loss 0.02658002 - time (sec): 41.57 - samples/sec: 1938.95 - lr: 0.000015 - momentum: 0.000000
420
+ 2023-10-24 16:34:03,288 epoch 6 - iter 594/992 - loss 0.02696841 - time (sec): 50.07 - samples/sec: 1958.83 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-24 16:34:11,609 epoch 6 - iter 693/992 - loss 0.02669713 - time (sec): 58.39 - samples/sec: 1959.03 - lr: 0.000014 - momentum: 0.000000
422
+ 2023-10-24 16:34:19,905 epoch 6 - iter 792/992 - loss 0.02835216 - time (sec): 66.69 - samples/sec: 1955.74 - lr: 0.000014 - momentum: 0.000000
423
+ 2023-10-24 16:34:28,428 epoch 6 - iter 891/992 - loss 0.02822978 - time (sec): 75.21 - samples/sec: 1950.65 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-24 16:34:36,703 epoch 6 - iter 990/992 - loss 0.02826272 - time (sec): 83.49 - samples/sec: 1960.26 - lr: 0.000013 - momentum: 0.000000
425
+ 2023-10-24 16:34:36,863 ----------------------------------------------------------------------------------------------------
426
+ 2023-10-24 16:34:36,863 EPOCH 6 done: loss 0.0282 - lr: 0.000013
427
+ 2023-10-24 16:34:39,974 DEV : loss 0.1790362298488617 - f1-score (micro avg) 0.7511
428
+ 2023-10-24 16:34:39,989 ----------------------------------------------------------------------------------------------------
429
+ 2023-10-24 16:34:48,498 epoch 7 - iter 99/992 - loss 0.01644419 - time (sec): 8.51 - samples/sec: 1981.82 - lr: 0.000013 - momentum: 0.000000
430
+ 2023-10-24 16:34:56,792 epoch 7 - iter 198/992 - loss 0.02013642 - time (sec): 16.80 - samples/sec: 2028.95 - lr: 0.000013 - momentum: 0.000000
431
+ 2023-10-24 16:35:05,121 epoch 7 - iter 297/992 - loss 0.02125966 - time (sec): 25.13 - samples/sec: 1985.38 - lr: 0.000012 - momentum: 0.000000
432
+ 2023-10-24 16:35:13,293 epoch 7 - iter 396/992 - loss 0.02244887 - time (sec): 33.30 - samples/sec: 1971.50 - lr: 0.000012 - momentum: 0.000000
433
+ 2023-10-24 16:35:21,764 epoch 7 - iter 495/992 - loss 0.02220930 - time (sec): 41.77 - samples/sec: 1972.33 - lr: 0.000012 - momentum: 0.000000
434
+ 2023-10-24 16:35:29,832 epoch 7 - iter 594/992 - loss 0.02281129 - time (sec): 49.84 - samples/sec: 1973.45 - lr: 0.000011 - momentum: 0.000000
435
+ 2023-10-24 16:35:38,344 epoch 7 - iter 693/992 - loss 0.02207634 - time (sec): 58.35 - samples/sec: 1975.07 - lr: 0.000011 - momentum: 0.000000
436
+ 2023-10-24 16:35:46,894 epoch 7 - iter 792/992 - loss 0.02167285 - time (sec): 66.90 - samples/sec: 1970.54 - lr: 0.000011 - momentum: 0.000000
437
+ 2023-10-24 16:35:55,536 epoch 7 - iter 891/992 - loss 0.02151418 - time (sec): 75.55 - samples/sec: 1963.93 - lr: 0.000010 - momentum: 0.000000
438
+ 2023-10-24 16:36:03,450 epoch 7 - iter 990/992 - loss 0.02174271 - time (sec): 83.46 - samples/sec: 1960.72 - lr: 0.000010 - momentum: 0.000000
439
+ 2023-10-24 16:36:03,610 ----------------------------------------------------------------------------------------------------
440
+ 2023-10-24 16:36:03,610 EPOCH 7 done: loss 0.0219 - lr: 0.000010
441
+ 2023-10-24 16:36:07,061 DEV : loss 0.21934953331947327 - f1-score (micro avg) 0.7551
442
+ 2023-10-24 16:36:07,077 ----------------------------------------------------------------------------------------------------
443
+ 2023-10-24 16:36:15,500 epoch 8 - iter 99/992 - loss 0.01765916 - time (sec): 8.42 - samples/sec: 1960.11 - lr: 0.000010 - momentum: 0.000000
444
+ 2023-10-24 16:36:24,237 epoch 8 - iter 198/992 - loss 0.01884836 - time (sec): 17.16 - samples/sec: 1946.40 - lr: 0.000009 - momentum: 0.000000
445
+ 2023-10-24 16:36:32,496 epoch 8 - iter 297/992 - loss 0.01792273 - time (sec): 25.42 - samples/sec: 1946.76 - lr: 0.000009 - momentum: 0.000000
446
+ 2023-10-24 16:36:40,614 epoch 8 - iter 396/992 - loss 0.01573405 - time (sec): 33.54 - samples/sec: 1946.65 - lr: 0.000009 - momentum: 0.000000
447
+ 2023-10-24 16:36:48,919 epoch 8 - iter 495/992 - loss 0.01514155 - time (sec): 41.84 - samples/sec: 1953.36 - lr: 0.000008 - momentum: 0.000000
448
+ 2023-10-24 16:36:57,378 epoch 8 - iter 594/992 - loss 0.01537701 - time (sec): 50.30 - samples/sec: 1952.83 - lr: 0.000008 - momentum: 0.000000
449
+ 2023-10-24 16:37:05,565 epoch 8 - iter 693/992 - loss 0.01515308 - time (sec): 58.49 - samples/sec: 1957.64 - lr: 0.000008 - momentum: 0.000000
450
+ 2023-10-24 16:37:13,947 epoch 8 - iter 792/992 - loss 0.01497357 - time (sec): 66.87 - samples/sec: 1960.07 - lr: 0.000007 - momentum: 0.000000
451
+ 2023-10-24 16:37:22,132 epoch 8 - iter 891/992 - loss 0.01482836 - time (sec): 75.05 - samples/sec: 1968.70 - lr: 0.000007 - momentum: 0.000000
452
+ 2023-10-24 16:37:30,512 epoch 8 - iter 990/992 - loss 0.01497237 - time (sec): 83.43 - samples/sec: 1962.21 - lr: 0.000007 - momentum: 0.000000
453
+ 2023-10-24 16:37:30,659 ----------------------------------------------------------------------------------------------------
454
+ 2023-10-24 16:37:30,660 EPOCH 8 done: loss 0.0150 - lr: 0.000007
455
+ 2023-10-24 16:37:33,778 DEV : loss 0.2332099825143814 - f1-score (micro avg) 0.7553
456
+ 2023-10-24 16:37:33,794 ----------------------------------------------------------------------------------------------------
457
+ 2023-10-24 16:37:41,933 epoch 9 - iter 99/992 - loss 0.01078508 - time (sec): 8.14 - samples/sec: 1968.47 - lr: 0.000006 - momentum: 0.000000
458
+ 2023-10-24 16:37:50,232 epoch 9 - iter 198/992 - loss 0.01190655 - time (sec): 16.44 - samples/sec: 1970.40 - lr: 0.000006 - momentum: 0.000000
459
+ 2023-10-24 16:37:58,290 epoch 9 - iter 297/992 - loss 0.01143782 - time (sec): 24.50 - samples/sec: 1969.81 - lr: 0.000006 - momentum: 0.000000
460
+ 2023-10-24 16:38:06,384 epoch 9 - iter 396/992 - loss 0.01071707 - time (sec): 32.59 - samples/sec: 1984.83 - lr: 0.000005 - momentum: 0.000000
461
+ 2023-10-24 16:38:15,150 epoch 9 - iter 495/992 - loss 0.01063424 - time (sec): 41.36 - samples/sec: 1971.48 - lr: 0.000005 - momentum: 0.000000
462
+ 2023-10-24 16:38:23,284 epoch 9 - iter 594/992 - loss 0.01044319 - time (sec): 49.49 - samples/sec: 1967.33 - lr: 0.000005 - momentum: 0.000000
463
+ 2023-10-24 16:38:31,709 epoch 9 - iter 693/992 - loss 0.01001900 - time (sec): 57.91 - samples/sec: 1959.44 - lr: 0.000004 - momentum: 0.000000
464
+ 2023-10-24 16:38:40,254 epoch 9 - iter 792/992 - loss 0.00985411 - time (sec): 66.46 - samples/sec: 1969.84 - lr: 0.000004 - momentum: 0.000000
465
+ 2023-10-24 16:38:48,649 epoch 9 - iter 891/992 - loss 0.01079216 - time (sec): 74.85 - samples/sec: 1977.22 - lr: 0.000004 - momentum: 0.000000
466
+ 2023-10-24 16:38:57,185 epoch 9 - iter 990/992 - loss 0.01138071 - time (sec): 83.39 - samples/sec: 1963.27 - lr: 0.000003 - momentum: 0.000000
467
+ 2023-10-24 16:38:57,344 ----------------------------------------------------------------------------------------------------
468
+ 2023-10-24 16:38:57,344 EPOCH 9 done: loss 0.0114 - lr: 0.000003
469
+ 2023-10-24 16:39:00,468 DEV : loss 0.228724405169487 - f1-score (micro avg) 0.7601
470
+ 2023-10-24 16:39:00,484 ----------------------------------------------------------------------------------------------------
471
+ 2023-10-24 16:39:08,677 epoch 10 - iter 99/992 - loss 0.00781916 - time (sec): 8.19 - samples/sec: 2036.06 - lr: 0.000003 - momentum: 0.000000
472
+ 2023-10-24 16:39:16,773 epoch 10 - iter 198/992 - loss 0.00897859 - time (sec): 16.29 - samples/sec: 1997.68 - lr: 0.000003 - momentum: 0.000000
473
+ 2023-10-24 16:39:25,014 epoch 10 - iter 297/992 - loss 0.00853106 - time (sec): 24.53 - samples/sec: 1999.32 - lr: 0.000002 - momentum: 0.000000
474
+ 2023-10-24 16:39:34,307 epoch 10 - iter 396/992 - loss 0.00758245 - time (sec): 33.82 - samples/sec: 1977.32 - lr: 0.000002 - momentum: 0.000000
475
+ 2023-10-24 16:39:42,756 epoch 10 - iter 495/992 - loss 0.00749694 - time (sec): 42.27 - samples/sec: 1963.08 - lr: 0.000002 - momentum: 0.000000
476
+ 2023-10-24 16:39:51,210 epoch 10 - iter 594/992 - loss 0.00702956 - time (sec): 50.73 - samples/sec: 1972.74 - lr: 0.000001 - momentum: 0.000000
477
+ 2023-10-24 16:39:59,286 epoch 10 - iter 693/992 - loss 0.00687848 - time (sec): 58.80 - samples/sec: 1971.60 - lr: 0.000001 - momentum: 0.000000
478
+ 2023-10-24 16:40:07,435 epoch 10 - iter 792/992 - loss 0.00674550 - time (sec): 66.95 - samples/sec: 1981.65 - lr: 0.000001 - momentum: 0.000000
479
+ 2023-10-24 16:40:15,573 epoch 10 - iter 891/992 - loss 0.00706231 - time (sec): 75.09 - samples/sec: 1972.65 - lr: 0.000000 - momentum: 0.000000
480
+ 2023-10-24 16:40:23,725 epoch 10 - iter 990/992 - loss 0.00727311 - time (sec): 83.24 - samples/sec: 1964.44 - lr: 0.000000 - momentum: 0.000000
481
+ 2023-10-24 16:40:23,948 ----------------------------------------------------------------------------------------------------
482
+ 2023-10-24 16:40:23,948 EPOCH 10 done: loss 0.0073 - lr: 0.000000
483
+ 2023-10-24 16:40:27,065 DEV : loss 0.24580398201942444 - f1-score (micro avg) 0.7635
484
+ 2023-10-24 16:40:27,554 ----------------------------------------------------------------------------------------------------
485
+ 2023-10-24 16:40:27,555 Loading model from best epoch ...
486
+ 2023-10-24 16:40:29,030 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
487
+ 2023-10-24 16:40:32,100
488
+ Results:
489
+ - F-score (micro) 0.7594
490
+ - F-score (macro) 0.6798
491
+ - Accuracy 0.633
492
+
493
+ By class:
494
+ precision recall f1-score support
495
+
496
+ LOC 0.8125 0.8137 0.8131 655
497
+ PER 0.7322 0.7848 0.7576 223
498
+ ORG 0.5000 0.4409 0.4686 127
499
+
500
+ micro avg 0.7587 0.7602 0.7594 1005
501
+ macro avg 0.6816 0.6798 0.6798 1005
502
+ weighted avg 0.7552 0.7602 0.7573 1005
503
+
504
+ 2023-10-24 16:40:32,100 ----------------------------------------------------------------------------------------------------