Upload ./training.log with huggingface_hub
Browse files- training.log +504 -0
training.log
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 16:25:58,391 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 16:25:58,392 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 16:25:58,392 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 16:25:58,393 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 16:25:58,393 Train: 7936 sentences
|
319 |
+
2023-10-24 16:25:58,393 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 16:25:58,393 Training Params:
|
322 |
+
2023-10-24 16:25:58,393 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 16:25:58,393 - mini_batch_size: "8"
|
324 |
+
2023-10-24 16:25:58,393 - max_epochs: "10"
|
325 |
+
2023-10-24 16:25:58,393 - shuffle: "True"
|
326 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 16:25:58,393 Plugins:
|
328 |
+
2023-10-24 16:25:58,393 - TensorboardLogger
|
329 |
+
2023-10-24 16:25:58,393 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 16:25:58,393 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 16:25:58,393 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 16:25:58,393 Computation:
|
335 |
+
2023-10-24 16:25:58,393 - compute on device: cuda:0
|
336 |
+
2023-10-24 16:25:58,393 - embedding storage: none
|
337 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 16:25:58,393 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
339 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 16:25:58,393 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 16:25:58,393 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 16:26:06,342 epoch 1 - iter 99/992 - loss 1.84117328 - time (sec): 7.95 - samples/sec: 1981.13 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 16:26:14,855 epoch 1 - iter 198/992 - loss 1.10138130 - time (sec): 16.46 - samples/sec: 1996.76 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 16:26:23,310 epoch 1 - iter 297/992 - loss 0.81486082 - time (sec): 24.92 - samples/sec: 2001.63 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 16:26:31,932 epoch 1 - iter 396/992 - loss 0.64687710 - time (sec): 33.54 - samples/sec: 2015.43 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 16:26:39,914 epoch 1 - iter 495/992 - loss 0.55583741 - time (sec): 41.52 - samples/sec: 1997.30 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 16:26:48,202 epoch 1 - iter 594/992 - loss 0.48695047 - time (sec): 49.81 - samples/sec: 1991.39 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 16:26:56,126 epoch 1 - iter 693/992 - loss 0.44276893 - time (sec): 57.73 - samples/sec: 1982.49 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 16:27:04,291 epoch 1 - iter 792/992 - loss 0.40513633 - time (sec): 65.90 - samples/sec: 1978.17 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 16:27:13,005 epoch 1 - iter 891/992 - loss 0.37397311 - time (sec): 74.61 - samples/sec: 1975.31 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 16:27:21,230 epoch 1 - iter 990/992 - loss 0.35036716 - time (sec): 82.84 - samples/sec: 1973.58 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 16:27:21,425 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 16:27:21,425 EPOCH 1 done: loss 0.3496 - lr: 0.000030
|
354 |
+
2023-10-24 16:27:24,457 DEV : loss 0.09255984425544739 - f1-score (micro avg) 0.7088
|
355 |
+
2023-10-24 16:27:24,472 saving best model
|
356 |
+
2023-10-24 16:27:24,943 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 16:27:33,171 epoch 2 - iter 99/992 - loss 0.10446376 - time (sec): 8.23 - samples/sec: 2021.90 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 16:27:41,671 epoch 2 - iter 198/992 - loss 0.10760078 - time (sec): 16.73 - samples/sec: 1971.38 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 16:27:49,862 epoch 2 - iter 297/992 - loss 0.10514711 - time (sec): 24.92 - samples/sec: 1966.95 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 16:27:58,454 epoch 2 - iter 396/992 - loss 0.10491517 - time (sec): 33.51 - samples/sec: 1965.67 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 16:28:06,674 epoch 2 - iter 495/992 - loss 0.10303159 - time (sec): 41.73 - samples/sec: 1962.28 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 16:28:15,062 epoch 2 - iter 594/992 - loss 0.10348052 - time (sec): 50.12 - samples/sec: 1961.05 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 16:28:23,656 epoch 2 - iter 693/992 - loss 0.10177488 - time (sec): 58.71 - samples/sec: 1964.56 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 16:28:32,361 epoch 2 - iter 792/992 - loss 0.10172499 - time (sec): 67.42 - samples/sec: 1957.58 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 16:28:40,452 epoch 2 - iter 891/992 - loss 0.10087184 - time (sec): 75.51 - samples/sec: 1956.03 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 16:28:48,445 epoch 2 - iter 990/992 - loss 0.09922248 - time (sec): 83.50 - samples/sec: 1961.60 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 16:28:48,581 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 16:28:48,581 EPOCH 2 done: loss 0.0993 - lr: 0.000027
|
369 |
+
2023-10-24 16:28:51,691 DEV : loss 0.09279114753007889 - f1-score (micro avg) 0.7279
|
370 |
+
2023-10-24 16:28:51,706 saving best model
|
371 |
+
2023-10-24 16:28:52,375 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 16:29:01,133 epoch 3 - iter 99/992 - loss 0.07605989 - time (sec): 8.76 - samples/sec: 1917.87 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 16:29:09,138 epoch 3 - iter 198/992 - loss 0.07095587 - time (sec): 16.76 - samples/sec: 1941.89 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 16:29:17,484 epoch 3 - iter 297/992 - loss 0.06933994 - time (sec): 25.11 - samples/sec: 1968.54 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 16:29:25,795 epoch 3 - iter 396/992 - loss 0.06953657 - time (sec): 33.42 - samples/sec: 1984.05 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 16:29:34,059 epoch 3 - iter 495/992 - loss 0.06985299 - time (sec): 41.68 - samples/sec: 1966.49 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 16:29:42,455 epoch 3 - iter 594/992 - loss 0.07018513 - time (sec): 50.08 - samples/sec: 1957.35 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 16:29:50,658 epoch 3 - iter 693/992 - loss 0.06885542 - time (sec): 58.28 - samples/sec: 1963.79 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 16:29:58,686 epoch 3 - iter 792/992 - loss 0.06830171 - time (sec): 66.31 - samples/sec: 1969.72 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 16:30:06,906 epoch 3 - iter 891/992 - loss 0.06866294 - time (sec): 74.53 - samples/sec: 1970.78 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 16:30:15,479 epoch 3 - iter 990/992 - loss 0.06874566 - time (sec): 83.10 - samples/sec: 1970.06 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 16:30:15,620 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 16:30:15,621 EPOCH 3 done: loss 0.0687 - lr: 0.000023
|
384 |
+
2023-10-24 16:30:19,034 DEV : loss 0.10878178477287292 - f1-score (micro avg) 0.7642
|
385 |
+
2023-10-24 16:30:19,049 saving best model
|
386 |
+
2023-10-24 16:30:19,637 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 16:30:28,163 epoch 4 - iter 99/992 - loss 0.04392941 - time (sec): 8.52 - samples/sec: 1987.79 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 16:30:36,328 epoch 4 - iter 198/992 - loss 0.04639438 - time (sec): 16.69 - samples/sec: 1952.85 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-24 16:30:44,969 epoch 4 - iter 297/992 - loss 0.04736008 - time (sec): 25.33 - samples/sec: 1973.99 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 16:30:53,150 epoch 4 - iter 396/992 - loss 0.04778313 - time (sec): 33.51 - samples/sec: 1968.61 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 16:31:01,433 epoch 4 - iter 495/992 - loss 0.04940814 - time (sec): 41.79 - samples/sec: 1968.99 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-24 16:31:09,947 epoch 4 - iter 594/992 - loss 0.04959742 - time (sec): 50.31 - samples/sec: 1965.94 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 16:31:17,969 epoch 4 - iter 693/992 - loss 0.04901512 - time (sec): 58.33 - samples/sec: 1965.80 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 16:31:26,565 epoch 4 - iter 792/992 - loss 0.05033168 - time (sec): 66.93 - samples/sec: 1958.37 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-24 16:31:34,725 epoch 4 - iter 891/992 - loss 0.05069359 - time (sec): 75.09 - samples/sec: 1965.14 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 16:31:42,979 epoch 4 - iter 990/992 - loss 0.04985751 - time (sec): 83.34 - samples/sec: 1964.11 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-24 16:31:43,127 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 16:31:43,127 EPOCH 4 done: loss 0.0498 - lr: 0.000020
|
399 |
+
2023-10-24 16:31:46,247 DEV : loss 0.12828028202056885 - f1-score (micro avg) 0.7563
|
400 |
+
2023-10-24 16:31:46,262 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-24 16:31:54,899 epoch 5 - iter 99/992 - loss 0.03290449 - time (sec): 8.64 - samples/sec: 1954.44 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-24 16:32:03,134 epoch 5 - iter 198/992 - loss 0.03381169 - time (sec): 16.87 - samples/sec: 1924.32 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-24 16:32:11,746 epoch 5 - iter 297/992 - loss 0.03697508 - time (sec): 25.48 - samples/sec: 1942.23 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 16:32:19,881 epoch 5 - iter 396/992 - loss 0.03788595 - time (sec): 33.62 - samples/sec: 1937.06 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 16:32:28,085 epoch 5 - iter 495/992 - loss 0.03765117 - time (sec): 41.82 - samples/sec: 1939.00 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-24 16:32:36,427 epoch 5 - iter 594/992 - loss 0.03686130 - time (sec): 50.16 - samples/sec: 1949.84 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 16:32:44,439 epoch 5 - iter 693/992 - loss 0.03765527 - time (sec): 58.18 - samples/sec: 1951.39 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 16:32:52,622 epoch 5 - iter 792/992 - loss 0.03734430 - time (sec): 66.36 - samples/sec: 1952.28 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-24 16:33:01,356 epoch 5 - iter 891/992 - loss 0.03750261 - time (sec): 75.09 - samples/sec: 1957.40 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 16:33:09,599 epoch 5 - iter 990/992 - loss 0.03737905 - time (sec): 83.34 - samples/sec: 1964.25 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 16:33:09,763 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-24 16:33:09,763 EPOCH 5 done: loss 0.0373 - lr: 0.000017
|
413 |
+
2023-10-24 16:33:13,201 DEV : loss 0.16802850365638733 - f1-score (micro avg) 0.7613
|
414 |
+
2023-10-24 16:33:13,216 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-24 16:33:21,537 epoch 6 - iter 99/992 - loss 0.02894776 - time (sec): 8.32 - samples/sec: 1949.39 - lr: 0.000016 - momentum: 0.000000
|
416 |
+
2023-10-24 16:33:29,913 epoch 6 - iter 198/992 - loss 0.02934176 - time (sec): 16.70 - samples/sec: 1933.41 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-24 16:33:38,373 epoch 6 - iter 297/992 - loss 0.02785056 - time (sec): 25.16 - samples/sec: 1915.53 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 16:33:46,336 epoch 6 - iter 396/992 - loss 0.02582194 - time (sec): 33.12 - samples/sec: 1931.95 - lr: 0.000015 - momentum: 0.000000
|
419 |
+
2023-10-24 16:33:54,785 epoch 6 - iter 495/992 - loss 0.02658002 - time (sec): 41.57 - samples/sec: 1938.95 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-24 16:34:03,288 epoch 6 - iter 594/992 - loss 0.02696841 - time (sec): 50.07 - samples/sec: 1958.83 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 16:34:11,609 epoch 6 - iter 693/992 - loss 0.02669713 - time (sec): 58.39 - samples/sec: 1959.03 - lr: 0.000014 - momentum: 0.000000
|
422 |
+
2023-10-24 16:34:19,905 epoch 6 - iter 792/992 - loss 0.02835216 - time (sec): 66.69 - samples/sec: 1955.74 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-24 16:34:28,428 epoch 6 - iter 891/992 - loss 0.02822978 - time (sec): 75.21 - samples/sec: 1950.65 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 16:34:36,703 epoch 6 - iter 990/992 - loss 0.02826272 - time (sec): 83.49 - samples/sec: 1960.26 - lr: 0.000013 - momentum: 0.000000
|
425 |
+
2023-10-24 16:34:36,863 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-24 16:34:36,863 EPOCH 6 done: loss 0.0282 - lr: 0.000013
|
427 |
+
2023-10-24 16:34:39,974 DEV : loss 0.1790362298488617 - f1-score (micro avg) 0.7511
|
428 |
+
2023-10-24 16:34:39,989 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-24 16:34:48,498 epoch 7 - iter 99/992 - loss 0.01644419 - time (sec): 8.51 - samples/sec: 1981.82 - lr: 0.000013 - momentum: 0.000000
|
430 |
+
2023-10-24 16:34:56,792 epoch 7 - iter 198/992 - loss 0.02013642 - time (sec): 16.80 - samples/sec: 2028.95 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-24 16:35:05,121 epoch 7 - iter 297/992 - loss 0.02125966 - time (sec): 25.13 - samples/sec: 1985.38 - lr: 0.000012 - momentum: 0.000000
|
432 |
+
2023-10-24 16:35:13,293 epoch 7 - iter 396/992 - loss 0.02244887 - time (sec): 33.30 - samples/sec: 1971.50 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-24 16:35:21,764 epoch 7 - iter 495/992 - loss 0.02220930 - time (sec): 41.77 - samples/sec: 1972.33 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 16:35:29,832 epoch 7 - iter 594/992 - loss 0.02281129 - time (sec): 49.84 - samples/sec: 1973.45 - lr: 0.000011 - momentum: 0.000000
|
435 |
+
2023-10-24 16:35:38,344 epoch 7 - iter 693/992 - loss 0.02207634 - time (sec): 58.35 - samples/sec: 1975.07 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-24 16:35:46,894 epoch 7 - iter 792/992 - loss 0.02167285 - time (sec): 66.90 - samples/sec: 1970.54 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 16:35:55,536 epoch 7 - iter 891/992 - loss 0.02151418 - time (sec): 75.55 - samples/sec: 1963.93 - lr: 0.000010 - momentum: 0.000000
|
438 |
+
2023-10-24 16:36:03,450 epoch 7 - iter 990/992 - loss 0.02174271 - time (sec): 83.46 - samples/sec: 1960.72 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-24 16:36:03,610 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-24 16:36:03,610 EPOCH 7 done: loss 0.0219 - lr: 0.000010
|
441 |
+
2023-10-24 16:36:07,061 DEV : loss 0.21934953331947327 - f1-score (micro avg) 0.7551
|
442 |
+
2023-10-24 16:36:07,077 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-24 16:36:15,500 epoch 8 - iter 99/992 - loss 0.01765916 - time (sec): 8.42 - samples/sec: 1960.11 - lr: 0.000010 - momentum: 0.000000
|
444 |
+
2023-10-24 16:36:24,237 epoch 8 - iter 198/992 - loss 0.01884836 - time (sec): 17.16 - samples/sec: 1946.40 - lr: 0.000009 - momentum: 0.000000
|
445 |
+
2023-10-24 16:36:32,496 epoch 8 - iter 297/992 - loss 0.01792273 - time (sec): 25.42 - samples/sec: 1946.76 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-24 16:36:40,614 epoch 8 - iter 396/992 - loss 0.01573405 - time (sec): 33.54 - samples/sec: 1946.65 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-24 16:36:48,919 epoch 8 - iter 495/992 - loss 0.01514155 - time (sec): 41.84 - samples/sec: 1953.36 - lr: 0.000008 - momentum: 0.000000
|
448 |
+
2023-10-24 16:36:57,378 epoch 8 - iter 594/992 - loss 0.01537701 - time (sec): 50.30 - samples/sec: 1952.83 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-24 16:37:05,565 epoch 8 - iter 693/992 - loss 0.01515308 - time (sec): 58.49 - samples/sec: 1957.64 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-24 16:37:13,947 epoch 8 - iter 792/992 - loss 0.01497357 - time (sec): 66.87 - samples/sec: 1960.07 - lr: 0.000007 - momentum: 0.000000
|
451 |
+
2023-10-24 16:37:22,132 epoch 8 - iter 891/992 - loss 0.01482836 - time (sec): 75.05 - samples/sec: 1968.70 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-24 16:37:30,512 epoch 8 - iter 990/992 - loss 0.01497237 - time (sec): 83.43 - samples/sec: 1962.21 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-24 16:37:30,659 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-24 16:37:30,660 EPOCH 8 done: loss 0.0150 - lr: 0.000007
|
455 |
+
2023-10-24 16:37:33,778 DEV : loss 0.2332099825143814 - f1-score (micro avg) 0.7553
|
456 |
+
2023-10-24 16:37:33,794 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-24 16:37:41,933 epoch 9 - iter 99/992 - loss 0.01078508 - time (sec): 8.14 - samples/sec: 1968.47 - lr: 0.000006 - momentum: 0.000000
|
458 |
+
2023-10-24 16:37:50,232 epoch 9 - iter 198/992 - loss 0.01190655 - time (sec): 16.44 - samples/sec: 1970.40 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-24 16:37:58,290 epoch 9 - iter 297/992 - loss 0.01143782 - time (sec): 24.50 - samples/sec: 1969.81 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-24 16:38:06,384 epoch 9 - iter 396/992 - loss 0.01071707 - time (sec): 32.59 - samples/sec: 1984.83 - lr: 0.000005 - momentum: 0.000000
|
461 |
+
2023-10-24 16:38:15,150 epoch 9 - iter 495/992 - loss 0.01063424 - time (sec): 41.36 - samples/sec: 1971.48 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-24 16:38:23,284 epoch 9 - iter 594/992 - loss 0.01044319 - time (sec): 49.49 - samples/sec: 1967.33 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-24 16:38:31,709 epoch 9 - iter 693/992 - loss 0.01001900 - time (sec): 57.91 - samples/sec: 1959.44 - lr: 0.000004 - momentum: 0.000000
|
464 |
+
2023-10-24 16:38:40,254 epoch 9 - iter 792/992 - loss 0.00985411 - time (sec): 66.46 - samples/sec: 1969.84 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-24 16:38:48,649 epoch 9 - iter 891/992 - loss 0.01079216 - time (sec): 74.85 - samples/sec: 1977.22 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-24 16:38:57,185 epoch 9 - iter 990/992 - loss 0.01138071 - time (sec): 83.39 - samples/sec: 1963.27 - lr: 0.000003 - momentum: 0.000000
|
467 |
+
2023-10-24 16:38:57,344 ----------------------------------------------------------------------------------------------------
|
468 |
+
2023-10-24 16:38:57,344 EPOCH 9 done: loss 0.0114 - lr: 0.000003
|
469 |
+
2023-10-24 16:39:00,468 DEV : loss 0.228724405169487 - f1-score (micro avg) 0.7601
|
470 |
+
2023-10-24 16:39:00,484 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-24 16:39:08,677 epoch 10 - iter 99/992 - loss 0.00781916 - time (sec): 8.19 - samples/sec: 2036.06 - lr: 0.000003 - momentum: 0.000000
|
472 |
+
2023-10-24 16:39:16,773 epoch 10 - iter 198/992 - loss 0.00897859 - time (sec): 16.29 - samples/sec: 1997.68 - lr: 0.000003 - momentum: 0.000000
|
473 |
+
2023-10-24 16:39:25,014 epoch 10 - iter 297/992 - loss 0.00853106 - time (sec): 24.53 - samples/sec: 1999.32 - lr: 0.000002 - momentum: 0.000000
|
474 |
+
2023-10-24 16:39:34,307 epoch 10 - iter 396/992 - loss 0.00758245 - time (sec): 33.82 - samples/sec: 1977.32 - lr: 0.000002 - momentum: 0.000000
|
475 |
+
2023-10-24 16:39:42,756 epoch 10 - iter 495/992 - loss 0.00749694 - time (sec): 42.27 - samples/sec: 1963.08 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 16:39:51,210 epoch 10 - iter 594/992 - loss 0.00702956 - time (sec): 50.73 - samples/sec: 1972.74 - lr: 0.000001 - momentum: 0.000000
|
477 |
+
2023-10-24 16:39:59,286 epoch 10 - iter 693/992 - loss 0.00687848 - time (sec): 58.80 - samples/sec: 1971.60 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-24 16:40:07,435 epoch 10 - iter 792/992 - loss 0.00674550 - time (sec): 66.95 - samples/sec: 1981.65 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 16:40:15,573 epoch 10 - iter 891/992 - loss 0.00706231 - time (sec): 75.09 - samples/sec: 1972.65 - lr: 0.000000 - momentum: 0.000000
|
480 |
+
2023-10-24 16:40:23,725 epoch 10 - iter 990/992 - loss 0.00727311 - time (sec): 83.24 - samples/sec: 1964.44 - lr: 0.000000 - momentum: 0.000000
|
481 |
+
2023-10-24 16:40:23,948 ----------------------------------------------------------------------------------------------------
|
482 |
+
2023-10-24 16:40:23,948 EPOCH 10 done: loss 0.0073 - lr: 0.000000
|
483 |
+
2023-10-24 16:40:27,065 DEV : loss 0.24580398201942444 - f1-score (micro avg) 0.7635
|
484 |
+
2023-10-24 16:40:27,554 ----------------------------------------------------------------------------------------------------
|
485 |
+
2023-10-24 16:40:27,555 Loading model from best epoch ...
|
486 |
+
2023-10-24 16:40:29,030 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
487 |
+
2023-10-24 16:40:32,100
|
488 |
+
Results:
|
489 |
+
- F-score (micro) 0.7594
|
490 |
+
- F-score (macro) 0.6798
|
491 |
+
- Accuracy 0.633
|
492 |
+
|
493 |
+
By class:
|
494 |
+
precision recall f1-score support
|
495 |
+
|
496 |
+
LOC 0.8125 0.8137 0.8131 655
|
497 |
+
PER 0.7322 0.7848 0.7576 223
|
498 |
+
ORG 0.5000 0.4409 0.4686 127
|
499 |
+
|
500 |
+
micro avg 0.7587 0.7602 0.7594 1005
|
501 |
+
macro avg 0.6816 0.6798 0.6798 1005
|
502 |
+
weighted avg 0.7552 0.7602 0.7573 1005
|
503 |
+
|
504 |
+
2023-10-24 16:40:32,100 ----------------------------------------------------------------------------------------------------
|