Upload ./training.log with huggingface_hub
Browse files- training.log +510 -0
training.log
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 13:26:12,906 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 13:26:12,907 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 13:26:12,907 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
317 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 13:26:12,907 Train: 5901 sentences
|
319 |
+
2023-10-24 13:26:12,907 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 13:26:12,907 Training Params:
|
322 |
+
2023-10-24 13:26:12,907 - learning_rate: "5e-05"
|
323 |
+
2023-10-24 13:26:12,907 - mini_batch_size: "8"
|
324 |
+
2023-10-24 13:26:12,907 - max_epochs: "10"
|
325 |
+
2023-10-24 13:26:12,907 - shuffle: "True"
|
326 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 13:26:12,907 Plugins:
|
328 |
+
2023-10-24 13:26:12,907 - TensorboardLogger
|
329 |
+
2023-10-24 13:26:12,907 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 13:26:12,907 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 13:26:12,907 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 13:26:12,907 Computation:
|
335 |
+
2023-10-24 13:26:12,907 - compute on device: cuda:0
|
336 |
+
2023-10-24 13:26:12,907 - embedding storage: none
|
337 |
+
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 13:26:12,908 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 13:26:12,908 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 13:26:19,585 epoch 1 - iter 73/738 - loss 1.87843397 - time (sec): 6.68 - samples/sec: 2355.81 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-24 13:26:26,648 epoch 1 - iter 146/738 - loss 1.23669691 - time (sec): 13.74 - samples/sec: 2287.20 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-24 13:26:33,333 epoch 1 - iter 219/738 - loss 0.95046007 - time (sec): 20.42 - samples/sec: 2293.57 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-24 13:26:39,552 epoch 1 - iter 292/738 - loss 0.78741929 - time (sec): 26.64 - samples/sec: 2325.13 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-24 13:26:47,678 epoch 1 - iter 365/738 - loss 0.66312271 - time (sec): 34.77 - samples/sec: 2330.02 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-24 13:26:54,437 epoch 1 - iter 438/738 - loss 0.58329828 - time (sec): 41.53 - samples/sec: 2361.83 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-24 13:27:01,634 epoch 1 - iter 511/738 - loss 0.52013512 - time (sec): 48.73 - samples/sec: 2367.86 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-24 13:27:08,503 epoch 1 - iter 584/738 - loss 0.47832610 - time (sec): 55.59 - samples/sec: 2361.41 - lr: 0.000039 - momentum: 0.000000
|
350 |
+
2023-10-24 13:27:15,950 epoch 1 - iter 657/738 - loss 0.44013722 - time (sec): 63.04 - samples/sec: 2355.32 - lr: 0.000044 - momentum: 0.000000
|
351 |
+
2023-10-24 13:27:22,402 epoch 1 - iter 730/738 - loss 0.41193232 - time (sec): 69.49 - samples/sec: 2358.74 - lr: 0.000049 - momentum: 0.000000
|
352 |
+
2023-10-24 13:27:23,423 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 13:27:23,423 EPOCH 1 done: loss 0.4080 - lr: 0.000049
|
354 |
+
2023-10-24 13:27:29,681 DEV : loss 0.10953915119171143 - f1-score (micro avg) 0.6996
|
355 |
+
2023-10-24 13:27:29,702 saving best model
|
356 |
+
2023-10-24 13:27:30,252 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 13:27:36,790 epoch 2 - iter 73/738 - loss 0.12856043 - time (sec): 6.54 - samples/sec: 2401.39 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-24 13:27:43,668 epoch 2 - iter 146/738 - loss 0.12842399 - time (sec): 13.42 - samples/sec: 2351.92 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-24 13:27:50,487 epoch 2 - iter 219/738 - loss 0.12815504 - time (sec): 20.23 - samples/sec: 2361.80 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-24 13:27:57,248 epoch 2 - iter 292/738 - loss 0.12409229 - time (sec): 27.00 - samples/sec: 2339.92 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-24 13:28:03,997 epoch 2 - iter 365/738 - loss 0.12199118 - time (sec): 33.74 - samples/sec: 2347.12 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-24 13:28:10,826 epoch 2 - iter 438/738 - loss 0.11973631 - time (sec): 40.57 - samples/sec: 2342.24 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-24 13:28:18,157 epoch 2 - iter 511/738 - loss 0.12078151 - time (sec): 47.90 - samples/sec: 2360.10 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-24 13:28:25,872 epoch 2 - iter 584/738 - loss 0.11713377 - time (sec): 55.62 - samples/sec: 2358.47 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-24 13:28:32,609 epoch 2 - iter 657/738 - loss 0.11656313 - time (sec): 62.36 - samples/sec: 2357.16 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-24 13:28:40,269 epoch 2 - iter 730/738 - loss 0.11463726 - time (sec): 70.02 - samples/sec: 2350.59 - lr: 0.000045 - momentum: 0.000000
|
367 |
+
2023-10-24 13:28:41,017 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 13:28:41,017 EPOCH 2 done: loss 0.1145 - lr: 0.000045
|
369 |
+
2023-10-24 13:28:49,488 DEV : loss 0.11087270081043243 - f1-score (micro avg) 0.7895
|
370 |
+
2023-10-24 13:28:49,509 saving best model
|
371 |
+
2023-10-24 13:28:50,218 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 13:28:56,322 epoch 3 - iter 73/738 - loss 0.05848905 - time (sec): 6.10 - samples/sec: 2528.26 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-24 13:29:03,544 epoch 3 - iter 146/738 - loss 0.06303135 - time (sec): 13.33 - samples/sec: 2409.83 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-24 13:29:11,131 epoch 3 - iter 219/738 - loss 0.06634706 - time (sec): 20.91 - samples/sec: 2351.64 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-24 13:29:18,504 epoch 3 - iter 292/738 - loss 0.06169395 - time (sec): 28.28 - samples/sec: 2350.13 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-24 13:29:25,686 epoch 3 - iter 365/738 - loss 0.06197945 - time (sec): 35.47 - samples/sec: 2337.71 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-24 13:29:32,841 epoch 3 - iter 438/738 - loss 0.06398829 - time (sec): 42.62 - samples/sec: 2338.06 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-24 13:29:39,705 epoch 3 - iter 511/738 - loss 0.06397235 - time (sec): 49.49 - samples/sec: 2340.00 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-24 13:29:46,062 epoch 3 - iter 584/738 - loss 0.06498214 - time (sec): 55.84 - samples/sec: 2350.07 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-24 13:29:52,694 epoch 3 - iter 657/738 - loss 0.06519288 - time (sec): 62.48 - samples/sec: 2347.72 - lr: 0.000040 - momentum: 0.000000
|
381 |
+
2023-10-24 13:29:59,865 epoch 3 - iter 730/738 - loss 0.06817157 - time (sec): 69.65 - samples/sec: 2355.77 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-24 13:30:01,021 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 13:30:01,021 EPOCH 3 done: loss 0.0681 - lr: 0.000039
|
384 |
+
2023-10-24 13:30:09,509 DEV : loss 0.11597760021686554 - f1-score (micro avg) 0.8001
|
385 |
+
2023-10-24 13:30:09,530 saving best model
|
386 |
+
2023-10-24 13:30:10,242 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 13:30:16,724 epoch 4 - iter 73/738 - loss 0.04098436 - time (sec): 6.48 - samples/sec: 2324.44 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-24 13:30:23,121 epoch 4 - iter 146/738 - loss 0.04478723 - time (sec): 12.88 - samples/sec: 2354.37 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-24 13:30:29,752 epoch 4 - iter 219/738 - loss 0.04880260 - time (sec): 19.51 - samples/sec: 2348.94 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-24 13:30:36,153 epoch 4 - iter 292/738 - loss 0.04742649 - time (sec): 25.91 - samples/sec: 2352.20 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-24 13:30:43,540 epoch 4 - iter 365/738 - loss 0.05043582 - time (sec): 33.30 - samples/sec: 2364.88 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-24 13:30:51,397 epoch 4 - iter 438/738 - loss 0.05054486 - time (sec): 41.15 - samples/sec: 2350.36 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-24 13:30:59,099 epoch 4 - iter 511/738 - loss 0.04763501 - time (sec): 48.86 - samples/sec: 2349.85 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-24 13:31:06,696 epoch 4 - iter 584/738 - loss 0.04763938 - time (sec): 56.45 - samples/sec: 2357.22 - lr: 0.000035 - momentum: 0.000000
|
395 |
+
2023-10-24 13:31:13,947 epoch 4 - iter 657/738 - loss 0.04791332 - time (sec): 63.70 - samples/sec: 2351.16 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-24 13:31:20,299 epoch 4 - iter 730/738 - loss 0.04703381 - time (sec): 70.06 - samples/sec: 2353.03 - lr: 0.000033 - momentum: 0.000000
|
397 |
+
2023-10-24 13:31:20,938 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 13:31:20,938 EPOCH 4 done: loss 0.0472 - lr: 0.000033
|
399 |
+
2023-10-24 13:31:29,454 DEV : loss 0.1576639711856842 - f1-score (micro avg) 0.8054
|
400 |
+
2023-10-24 13:31:29,475 saving best model
|
401 |
+
2023-10-24 13:31:30,138 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-24 13:31:36,865 epoch 5 - iter 73/738 - loss 0.03814569 - time (sec): 6.73 - samples/sec: 2415.22 - lr: 0.000033 - momentum: 0.000000
|
403 |
+
2023-10-24 13:31:44,135 epoch 5 - iter 146/738 - loss 0.03447645 - time (sec): 14.00 - samples/sec: 2422.92 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-24 13:31:51,116 epoch 5 - iter 219/738 - loss 0.03261789 - time (sec): 20.98 - samples/sec: 2354.95 - lr: 0.000032 - momentum: 0.000000
|
405 |
+
2023-10-24 13:31:57,985 epoch 5 - iter 292/738 - loss 0.03744440 - time (sec): 27.85 - samples/sec: 2360.46 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-24 13:32:05,585 epoch 5 - iter 365/738 - loss 0.03675531 - time (sec): 35.45 - samples/sec: 2368.90 - lr: 0.000031 - momentum: 0.000000
|
407 |
+
2023-10-24 13:32:12,307 epoch 5 - iter 438/738 - loss 0.03564464 - time (sec): 42.17 - samples/sec: 2369.51 - lr: 0.000030 - momentum: 0.000000
|
408 |
+
2023-10-24 13:32:18,805 epoch 5 - iter 511/738 - loss 0.03487785 - time (sec): 48.67 - samples/sec: 2360.38 - lr: 0.000030 - momentum: 0.000000
|
409 |
+
2023-10-24 13:32:26,703 epoch 5 - iter 584/738 - loss 0.03512836 - time (sec): 56.56 - samples/sec: 2340.57 - lr: 0.000029 - momentum: 0.000000
|
410 |
+
2023-10-24 13:32:33,278 epoch 5 - iter 657/738 - loss 0.03480734 - time (sec): 63.14 - samples/sec: 2353.68 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-24 13:32:40,558 epoch 5 - iter 730/738 - loss 0.03464501 - time (sec): 70.42 - samples/sec: 2341.86 - lr: 0.000028 - momentum: 0.000000
|
412 |
+
2023-10-24 13:32:41,297 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-24 13:32:41,298 EPOCH 5 done: loss 0.0346 - lr: 0.000028
|
414 |
+
2023-10-24 13:32:49,820 DEV : loss 0.17847341299057007 - f1-score (micro avg) 0.8278
|
415 |
+
2023-10-24 13:32:49,842 saving best model
|
416 |
+
2023-10-24 13:32:50,561 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-24 13:32:57,858 epoch 6 - iter 73/738 - loss 0.01898276 - time (sec): 7.30 - samples/sec: 2357.37 - lr: 0.000027 - momentum: 0.000000
|
418 |
+
2023-10-24 13:33:03,897 epoch 6 - iter 146/738 - loss 0.02062329 - time (sec): 13.34 - samples/sec: 2388.72 - lr: 0.000027 - momentum: 0.000000
|
419 |
+
2023-10-24 13:33:11,244 epoch 6 - iter 219/738 - loss 0.01861392 - time (sec): 20.68 - samples/sec: 2330.38 - lr: 0.000026 - momentum: 0.000000
|
420 |
+
2023-10-24 13:33:19,200 epoch 6 - iter 292/738 - loss 0.02328625 - time (sec): 28.64 - samples/sec: 2365.49 - lr: 0.000026 - momentum: 0.000000
|
421 |
+
2023-10-24 13:33:25,704 epoch 6 - iter 365/738 - loss 0.02353453 - time (sec): 35.14 - samples/sec: 2361.28 - lr: 0.000025 - momentum: 0.000000
|
422 |
+
2023-10-24 13:33:32,111 epoch 6 - iter 438/738 - loss 0.02268378 - time (sec): 41.55 - samples/sec: 2356.15 - lr: 0.000025 - momentum: 0.000000
|
423 |
+
2023-10-24 13:33:38,223 epoch 6 - iter 511/738 - loss 0.02475660 - time (sec): 47.66 - samples/sec: 2350.05 - lr: 0.000024 - momentum: 0.000000
|
424 |
+
2023-10-24 13:33:45,381 epoch 6 - iter 584/738 - loss 0.02481615 - time (sec): 54.82 - samples/sec: 2350.71 - lr: 0.000023 - momentum: 0.000000
|
425 |
+
2023-10-24 13:33:53,219 epoch 6 - iter 657/738 - loss 0.02437100 - time (sec): 62.66 - samples/sec: 2352.59 - lr: 0.000023 - momentum: 0.000000
|
426 |
+
2023-10-24 13:34:00,631 epoch 6 - iter 730/738 - loss 0.02404331 - time (sec): 70.07 - samples/sec: 2350.44 - lr: 0.000022 - momentum: 0.000000
|
427 |
+
2023-10-24 13:34:01,283 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-24 13:34:01,284 EPOCH 6 done: loss 0.0239 - lr: 0.000022
|
429 |
+
2023-10-24 13:34:09,822 DEV : loss 0.19103363156318665 - f1-score (micro avg) 0.8177
|
430 |
+
2023-10-24 13:34:09,844 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-24 13:34:17,437 epoch 7 - iter 73/738 - loss 0.01986646 - time (sec): 7.59 - samples/sec: 2506.14 - lr: 0.000022 - momentum: 0.000000
|
432 |
+
2023-10-24 13:34:24,923 epoch 7 - iter 146/738 - loss 0.01706995 - time (sec): 15.08 - samples/sec: 2406.26 - lr: 0.000021 - momentum: 0.000000
|
433 |
+
2023-10-24 13:34:31,695 epoch 7 - iter 219/738 - loss 0.01522152 - time (sec): 21.85 - samples/sec: 2366.54 - lr: 0.000021 - momentum: 0.000000
|
434 |
+
2023-10-24 13:34:38,753 epoch 7 - iter 292/738 - loss 0.01709441 - time (sec): 28.91 - samples/sec: 2354.77 - lr: 0.000020 - momentum: 0.000000
|
435 |
+
2023-10-24 13:34:45,228 epoch 7 - iter 365/738 - loss 0.01655309 - time (sec): 35.38 - samples/sec: 2363.51 - lr: 0.000020 - momentum: 0.000000
|
436 |
+
2023-10-24 13:34:51,955 epoch 7 - iter 438/738 - loss 0.01608348 - time (sec): 42.11 - samples/sec: 2356.84 - lr: 0.000019 - momentum: 0.000000
|
437 |
+
2023-10-24 13:34:58,690 epoch 7 - iter 511/738 - loss 0.01628481 - time (sec): 48.84 - samples/sec: 2347.12 - lr: 0.000018 - momentum: 0.000000
|
438 |
+
2023-10-24 13:35:04,990 epoch 7 - iter 584/738 - loss 0.01670341 - time (sec): 55.15 - samples/sec: 2345.70 - lr: 0.000018 - momentum: 0.000000
|
439 |
+
2023-10-24 13:35:13,111 epoch 7 - iter 657/738 - loss 0.01686839 - time (sec): 63.27 - samples/sec: 2348.50 - lr: 0.000017 - momentum: 0.000000
|
440 |
+
2023-10-24 13:35:20,233 epoch 7 - iter 730/738 - loss 0.01751030 - time (sec): 70.39 - samples/sec: 2338.05 - lr: 0.000017 - momentum: 0.000000
|
441 |
+
2023-10-24 13:35:20,903 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-24 13:35:20,903 EPOCH 7 done: loss 0.0175 - lr: 0.000017
|
443 |
+
2023-10-24 13:35:29,453 DEV : loss 0.19701939821243286 - f1-score (micro avg) 0.8147
|
444 |
+
2023-10-24 13:35:29,474 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-24 13:35:36,177 epoch 8 - iter 73/738 - loss 0.00499695 - time (sec): 6.70 - samples/sec: 2239.76 - lr: 0.000016 - momentum: 0.000000
|
446 |
+
2023-10-24 13:35:43,356 epoch 8 - iter 146/738 - loss 0.00716743 - time (sec): 13.88 - samples/sec: 2271.84 - lr: 0.000016 - momentum: 0.000000
|
447 |
+
2023-10-24 13:35:50,568 epoch 8 - iter 219/738 - loss 0.00825664 - time (sec): 21.09 - samples/sec: 2323.82 - lr: 0.000015 - momentum: 0.000000
|
448 |
+
2023-10-24 13:35:58,122 epoch 8 - iter 292/738 - loss 0.01241157 - time (sec): 28.65 - samples/sec: 2372.68 - lr: 0.000015 - momentum: 0.000000
|
449 |
+
2023-10-24 13:36:04,517 epoch 8 - iter 365/738 - loss 0.01179330 - time (sec): 35.04 - samples/sec: 2374.44 - lr: 0.000014 - momentum: 0.000000
|
450 |
+
2023-10-24 13:36:11,878 epoch 8 - iter 438/738 - loss 0.01120012 - time (sec): 42.40 - samples/sec: 2367.55 - lr: 0.000013 - momentum: 0.000000
|
451 |
+
2023-10-24 13:36:18,294 epoch 8 - iter 511/738 - loss 0.01084709 - time (sec): 48.82 - samples/sec: 2364.83 - lr: 0.000013 - momentum: 0.000000
|
452 |
+
2023-10-24 13:36:25,096 epoch 8 - iter 584/738 - loss 0.01068412 - time (sec): 55.62 - samples/sec: 2365.31 - lr: 0.000012 - momentum: 0.000000
|
453 |
+
2023-10-24 13:36:32,706 epoch 8 - iter 657/738 - loss 0.01037388 - time (sec): 63.23 - samples/sec: 2359.64 - lr: 0.000012 - momentum: 0.000000
|
454 |
+
2023-10-24 13:36:39,555 epoch 8 - iter 730/738 - loss 0.01018278 - time (sec): 70.08 - samples/sec: 2347.80 - lr: 0.000011 - momentum: 0.000000
|
455 |
+
2023-10-24 13:36:40,255 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-24 13:36:40,255 EPOCH 8 done: loss 0.0101 - lr: 0.000011
|
457 |
+
2023-10-24 13:36:48,796 DEV : loss 0.2113467901945114 - f1-score (micro avg) 0.8322
|
458 |
+
2023-10-24 13:36:48,817 saving best model
|
459 |
+
2023-10-24 13:36:49,516 ----------------------------------------------------------------------------------------------------
|
460 |
+
2023-10-24 13:36:56,498 epoch 9 - iter 73/738 - loss 0.00505270 - time (sec): 6.98 - samples/sec: 2316.96 - lr: 0.000011 - momentum: 0.000000
|
461 |
+
2023-10-24 13:37:04,786 epoch 9 - iter 146/738 - loss 0.00820157 - time (sec): 15.27 - samples/sec: 2400.03 - lr: 0.000010 - momentum: 0.000000
|
462 |
+
2023-10-24 13:37:11,208 epoch 9 - iter 219/738 - loss 0.00649651 - time (sec): 21.69 - samples/sec: 2406.43 - lr: 0.000010 - momentum: 0.000000
|
463 |
+
2023-10-24 13:37:17,526 epoch 9 - iter 292/738 - loss 0.00547378 - time (sec): 28.01 - samples/sec: 2418.99 - lr: 0.000009 - momentum: 0.000000
|
464 |
+
2023-10-24 13:37:24,116 epoch 9 - iter 365/738 - loss 0.00612415 - time (sec): 34.60 - samples/sec: 2391.03 - lr: 0.000008 - momentum: 0.000000
|
465 |
+
2023-10-24 13:37:31,210 epoch 9 - iter 438/738 - loss 0.00698846 - time (sec): 41.69 - samples/sec: 2378.01 - lr: 0.000008 - momentum: 0.000000
|
466 |
+
2023-10-24 13:37:37,809 epoch 9 - iter 511/738 - loss 0.00675961 - time (sec): 48.29 - samples/sec: 2378.54 - lr: 0.000007 - momentum: 0.000000
|
467 |
+
2023-10-24 13:37:44,996 epoch 9 - iter 584/738 - loss 0.00753027 - time (sec): 55.48 - samples/sec: 2370.53 - lr: 0.000007 - momentum: 0.000000
|
468 |
+
2023-10-24 13:37:52,346 epoch 9 - iter 657/738 - loss 0.00763591 - time (sec): 62.83 - samples/sec: 2367.35 - lr: 0.000006 - momentum: 0.000000
|
469 |
+
2023-10-24 13:37:59,594 epoch 9 - iter 730/738 - loss 0.00777319 - time (sec): 70.08 - samples/sec: 2353.84 - lr: 0.000006 - momentum: 0.000000
|
470 |
+
2023-10-24 13:38:00,322 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-24 13:38:00,323 EPOCH 9 done: loss 0.0078 - lr: 0.000006
|
472 |
+
2023-10-24 13:38:08,878 DEV : loss 0.21783244609832764 - f1-score (micro avg) 0.8352
|
473 |
+
2023-10-24 13:38:08,900 saving best model
|
474 |
+
2023-10-24 13:38:09,600 ----------------------------------------------------------------------------------------------------
|
475 |
+
2023-10-24 13:38:16,920 epoch 10 - iter 73/738 - loss 0.00253360 - time (sec): 7.32 - samples/sec: 2295.08 - lr: 0.000005 - momentum: 0.000000
|
476 |
+
2023-10-24 13:38:23,358 epoch 10 - iter 146/738 - loss 0.00249723 - time (sec): 13.76 - samples/sec: 2342.58 - lr: 0.000004 - momentum: 0.000000
|
477 |
+
2023-10-24 13:38:30,009 epoch 10 - iter 219/738 - loss 0.00177836 - time (sec): 20.41 - samples/sec: 2356.11 - lr: 0.000004 - momentum: 0.000000
|
478 |
+
2023-10-24 13:38:36,780 epoch 10 - iter 292/738 - loss 0.00257288 - time (sec): 27.18 - samples/sec: 2357.09 - lr: 0.000003 - momentum: 0.000000
|
479 |
+
2023-10-24 13:38:43,614 epoch 10 - iter 365/738 - loss 0.00349932 - time (sec): 34.01 - samples/sec: 2339.08 - lr: 0.000003 - momentum: 0.000000
|
480 |
+
2023-10-24 13:38:50,533 epoch 10 - iter 438/738 - loss 0.00352785 - time (sec): 40.93 - samples/sec: 2317.89 - lr: 0.000002 - momentum: 0.000000
|
481 |
+
2023-10-24 13:38:57,255 epoch 10 - iter 511/738 - loss 0.00323887 - time (sec): 47.65 - samples/sec: 2327.57 - lr: 0.000002 - momentum: 0.000000
|
482 |
+
2023-10-24 13:39:03,819 epoch 10 - iter 584/738 - loss 0.00431697 - time (sec): 54.22 - samples/sec: 2329.50 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-24 13:39:11,019 epoch 10 - iter 657/738 - loss 0.00445023 - time (sec): 61.42 - samples/sec: 2355.78 - lr: 0.000001 - momentum: 0.000000
|
484 |
+
2023-10-24 13:39:19,476 epoch 10 - iter 730/738 - loss 0.00508714 - time (sec): 69.87 - samples/sec: 2356.15 - lr: 0.000000 - momentum: 0.000000
|
485 |
+
2023-10-24 13:39:20,153 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-24 13:39:20,153 EPOCH 10 done: loss 0.0050 - lr: 0.000000
|
487 |
+
2023-10-24 13:39:28,707 DEV : loss 0.22154250741004944 - f1-score (micro avg) 0.8321
|
488 |
+
2023-10-24 13:39:29,293 ----------------------------------------------------------------------------------------------------
|
489 |
+
2023-10-24 13:39:29,294 Loading model from best epoch ...
|
490 |
+
2023-10-24 13:39:31,161 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
491 |
+
2023-10-24 13:39:37,474
|
492 |
+
Results:
|
493 |
+
- F-score (micro) 0.7844
|
494 |
+
- F-score (macro) 0.6892
|
495 |
+
- Accuracy 0.6719
|
496 |
+
|
497 |
+
By class:
|
498 |
+
precision recall f1-score support
|
499 |
+
|
500 |
+
loc 0.8373 0.8695 0.8531 858
|
501 |
+
pers 0.7276 0.7858 0.7556 537
|
502 |
+
org 0.5926 0.6061 0.5993 132
|
503 |
+
time 0.5231 0.6296 0.5714 54
|
504 |
+
prod 0.7400 0.6066 0.6667 61
|
505 |
+
|
506 |
+
micro avg 0.7664 0.8033 0.7844 1642
|
507 |
+
macro avg 0.6841 0.6995 0.6892 1642
|
508 |
+
weighted avg 0.7678 0.8033 0.7846 1642
|
509 |
+
|
510 |
+
2023-10-24 13:39:37,474 ----------------------------------------------------------------------------------------------------
|