stefan-it commited on
Commit
6ac4f79
1 Parent(s): 550a78f

readme: add initial version of model card (#1)

Browse files

- readme: add initial version of model card (9ded9466e7e776c07663cf57ed9590a0d087c3d0)

Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fr
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: dbmdz/bert-base-historic-multilingual-64k-td-cased
9
+ widget:
10
+ - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral
11
+ , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l '
12
+ élément national du radicalisme genevois , en d ' autres termes , de défendre
13
+ la politique intransigeante do M . Carteret , en opposition aux tendances du groupe
14
+ _ > dont le Genevois est l ' organe . Bétail .
15
+ ---
16
+
17
+ # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022)
18
+
19
+ This Flair model was fine-tuned on the
20
+ [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md)
21
+ NER Dataset using hmBERT 64k as backbone LM.
22
+
23
+ The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found
24
+ [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21).
25
+
26
+ The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`.
27
+
28
+ # Results
29
+
30
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
31
+
32
+ * Batch Sizes: `[4, 8]`
33
+ * Learning Rates: `[3e-05, 5e-05]`
34
+
35
+ And report micro F1-score on development set:
36
+
37
+ | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
38
+ |-------------------|--------------|--------------|--------------|-----------------|--------------|-----------------|
39
+ | `bs8-e10-lr3e-05` | [0.8389][1] | [0.8466][2] | [0.8299][3] | [**0.8391**][4] | [0.8427][5] | 0.8394 ± 0.0062 |
40
+ | `bs4-e10-lr3e-05` | [0.8279][6] | [0.8364][7] | [0.8404][8] | [0.8382][9] | [0.8371][10] | 0.836 ± 0.0048 |
41
+ | `bs8-e10-lr5e-05` | [0.8418][11] | [0.8337][12] | [0.831][13] | [0.8346][14] | [0.8352][15] | 0.8353 ± 0.004 |
42
+ | `bs4-e10-lr5e-05` | [0.831][16] | [0.8239][17] | [0.7784][18] | [0.8313][19] | [0.8191][20] | 0.8167 ± 0.022 |
43
+
44
+ [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
45
+ [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
46
+ [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
47
+ [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
48
+ [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
49
+ [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
50
+ [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
51
+ [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
52
+ [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
53
+ [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
54
+ [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
55
+ [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
56
+ [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
57
+ [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
58
+ [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
59
+ [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
60
+ [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
61
+ [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
62
+ [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
63
+ [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
64
+
65
+ The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
66
+
67
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
68
+
69
+ # Acknowledgements
70
+
71
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
72
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
73
+
74
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
75
+ Many Thanks for providing access to the TPUs ❤️