stefan-it commited on
Commit
d26c5d6
1 Parent(s): df18f64

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +509 -0
training.log ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-23 21:13:14,094 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-23 21:13:14,095 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=21, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-23 21:13:14,096 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
316
+ - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
317
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-23 21:13:14,096 Train: 3575 sentences
319
+ 2023-10-23 21:13:14,096 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-23 21:13:14,096 Training Params:
322
+ 2023-10-23 21:13:14,096 - learning_rate: "5e-05"
323
+ 2023-10-23 21:13:14,096 - mini_batch_size: "8"
324
+ 2023-10-23 21:13:14,096 - max_epochs: "10"
325
+ 2023-10-23 21:13:14,096 - shuffle: "True"
326
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-23 21:13:14,096 Plugins:
328
+ 2023-10-23 21:13:14,096 - TensorboardLogger
329
+ 2023-10-23 21:13:14,096 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-23 21:13:14,096 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-23 21:13:14,096 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-23 21:13:14,096 Computation:
335
+ 2023-10-23 21:13:14,096 - compute on device: cuda:0
336
+ 2023-10-23 21:13:14,096 - embedding storage: none
337
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-23 21:13:14,096 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
339
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-23 21:13:14,096 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-23 21:13:14,096 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-23 21:13:17,881 epoch 1 - iter 44/447 - loss 2.49175659 - time (sec): 3.78 - samples/sec: 2075.50 - lr: 0.000005 - momentum: 0.000000
343
+ 2023-10-23 21:13:21,992 epoch 1 - iter 88/447 - loss 1.47620142 - time (sec): 7.89 - samples/sec: 2092.81 - lr: 0.000010 - momentum: 0.000000
344
+ 2023-10-23 21:13:26,073 epoch 1 - iter 132/447 - loss 1.09754009 - time (sec): 11.98 - samples/sec: 2087.54 - lr: 0.000015 - momentum: 0.000000
345
+ 2023-10-23 21:13:30,090 epoch 1 - iter 176/447 - loss 0.91399479 - time (sec): 15.99 - samples/sec: 2082.94 - lr: 0.000020 - momentum: 0.000000
346
+ 2023-10-23 21:13:33,970 epoch 1 - iter 220/447 - loss 0.79606073 - time (sec): 19.87 - samples/sec: 2107.84 - lr: 0.000024 - momentum: 0.000000
347
+ 2023-10-23 21:13:37,765 epoch 1 - iter 264/447 - loss 0.71083825 - time (sec): 23.67 - samples/sec: 2107.04 - lr: 0.000029 - momentum: 0.000000
348
+ 2023-10-23 21:13:41,687 epoch 1 - iter 308/447 - loss 0.64270297 - time (sec): 27.59 - samples/sec: 2109.42 - lr: 0.000034 - momentum: 0.000000
349
+ 2023-10-23 21:13:45,652 epoch 1 - iter 352/447 - loss 0.58337536 - time (sec): 31.56 - samples/sec: 2111.17 - lr: 0.000039 - momentum: 0.000000
350
+ 2023-10-23 21:13:50,089 epoch 1 - iter 396/447 - loss 0.53741990 - time (sec): 35.99 - samples/sec: 2126.06 - lr: 0.000044 - momentum: 0.000000
351
+ 2023-10-23 21:13:53,893 epoch 1 - iter 440/447 - loss 0.50360530 - time (sec): 39.80 - samples/sec: 2139.48 - lr: 0.000049 - momentum: 0.000000
352
+ 2023-10-23 21:13:54,507 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-23 21:13:54,507 EPOCH 1 done: loss 0.4979 - lr: 0.000049
354
+ 2023-10-23 21:13:59,344 DEV : loss 0.14264939725399017 - f1-score (micro avg) 0.649
355
+ 2023-10-23 21:13:59,365 saving best model
356
+ 2023-10-23 21:13:59,841 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-23 21:14:03,572 epoch 2 - iter 44/447 - loss 0.17136363 - time (sec): 3.73 - samples/sec: 2204.31 - lr: 0.000049 - momentum: 0.000000
358
+ 2023-10-23 21:14:07,600 epoch 2 - iter 88/447 - loss 0.14665351 - time (sec): 7.76 - samples/sec: 2168.58 - lr: 0.000049 - momentum: 0.000000
359
+ 2023-10-23 21:14:11,683 epoch 2 - iter 132/447 - loss 0.13770205 - time (sec): 11.84 - samples/sec: 2165.41 - lr: 0.000048 - momentum: 0.000000
360
+ 2023-10-23 21:14:15,810 epoch 2 - iter 176/447 - loss 0.13975349 - time (sec): 15.97 - samples/sec: 2152.86 - lr: 0.000048 - momentum: 0.000000
361
+ 2023-10-23 21:14:19,583 epoch 2 - iter 220/447 - loss 0.13141036 - time (sec): 19.74 - samples/sec: 2131.99 - lr: 0.000047 - momentum: 0.000000
362
+ 2023-10-23 21:14:23,712 epoch 2 - iter 264/447 - loss 0.13359602 - time (sec): 23.87 - samples/sec: 2136.28 - lr: 0.000047 - momentum: 0.000000
363
+ 2023-10-23 21:14:27,728 epoch 2 - iter 308/447 - loss 0.13099589 - time (sec): 27.89 - samples/sec: 2141.32 - lr: 0.000046 - momentum: 0.000000
364
+ 2023-10-23 21:14:31,359 epoch 2 - iter 352/447 - loss 0.13108938 - time (sec): 31.52 - samples/sec: 2145.97 - lr: 0.000046 - momentum: 0.000000
365
+ 2023-10-23 21:14:35,837 epoch 2 - iter 396/447 - loss 0.13272083 - time (sec): 35.99 - samples/sec: 2139.98 - lr: 0.000045 - momentum: 0.000000
366
+ 2023-10-23 21:14:39,654 epoch 2 - iter 440/447 - loss 0.13058338 - time (sec): 39.81 - samples/sec: 2138.26 - lr: 0.000045 - momentum: 0.000000
367
+ 2023-10-23 21:14:40,251 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-23 21:14:40,251 EPOCH 2 done: loss 0.1303 - lr: 0.000045
369
+ 2023-10-23 21:14:46,728 DEV : loss 0.12430483102798462 - f1-score (micro avg) 0.7252
370
+ 2023-10-23 21:14:46,749 saving best model
371
+ 2023-10-23 21:14:47,345 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-23 21:14:51,416 epoch 3 - iter 44/447 - loss 0.06343382 - time (sec): 4.07 - samples/sec: 2147.46 - lr: 0.000044 - momentum: 0.000000
373
+ 2023-10-23 21:14:55,502 epoch 3 - iter 88/447 - loss 0.07942642 - time (sec): 8.16 - samples/sec: 2140.20 - lr: 0.000043 - momentum: 0.000000
374
+ 2023-10-23 21:14:59,641 epoch 3 - iter 132/447 - loss 0.07644302 - time (sec): 12.30 - samples/sec: 2162.74 - lr: 0.000043 - momentum: 0.000000
375
+ 2023-10-23 21:15:03,560 epoch 3 - iter 176/447 - loss 0.07415197 - time (sec): 16.21 - samples/sec: 2126.47 - lr: 0.000042 - momentum: 0.000000
376
+ 2023-10-23 21:15:07,434 epoch 3 - iter 220/447 - loss 0.07458049 - time (sec): 20.09 - samples/sec: 2144.74 - lr: 0.000042 - momentum: 0.000000
377
+ 2023-10-23 21:15:11,199 epoch 3 - iter 264/447 - loss 0.07373489 - time (sec): 23.85 - samples/sec: 2150.21 - lr: 0.000041 - momentum: 0.000000
378
+ 2023-10-23 21:15:15,070 epoch 3 - iter 308/447 - loss 0.07485896 - time (sec): 27.72 - samples/sec: 2142.33 - lr: 0.000041 - momentum: 0.000000
379
+ 2023-10-23 21:15:19,242 epoch 3 - iter 352/447 - loss 0.07147296 - time (sec): 31.90 - samples/sec: 2146.35 - lr: 0.000040 - momentum: 0.000000
380
+ 2023-10-23 21:15:23,058 epoch 3 - iter 396/447 - loss 0.07105503 - time (sec): 35.71 - samples/sec: 2149.05 - lr: 0.000040 - momentum: 0.000000
381
+ 2023-10-23 21:15:27,181 epoch 3 - iter 440/447 - loss 0.07201190 - time (sec): 39.83 - samples/sec: 2134.04 - lr: 0.000039 - momentum: 0.000000
382
+ 2023-10-23 21:15:27,838 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-23 21:15:27,839 EPOCH 3 done: loss 0.0720 - lr: 0.000039
384
+ 2023-10-23 21:15:34,341 DEV : loss 0.13549202680587769 - f1-score (micro avg) 0.7124
385
+ 2023-10-23 21:15:34,361 ----------------------------------------------------------------------------------------------------
386
+ 2023-10-23 21:15:38,090 epoch 4 - iter 44/447 - loss 0.04999690 - time (sec): 3.73 - samples/sec: 2136.07 - lr: 0.000038 - momentum: 0.000000
387
+ 2023-10-23 21:15:42,151 epoch 4 - iter 88/447 - loss 0.04797379 - time (sec): 7.79 - samples/sec: 2115.30 - lr: 0.000038 - momentum: 0.000000
388
+ 2023-10-23 21:15:46,201 epoch 4 - iter 132/447 - loss 0.04349472 - time (sec): 11.84 - samples/sec: 2134.54 - lr: 0.000037 - momentum: 0.000000
389
+ 2023-10-23 21:15:50,375 epoch 4 - iter 176/447 - loss 0.04141184 - time (sec): 16.01 - samples/sec: 2118.29 - lr: 0.000037 - momentum: 0.000000
390
+ 2023-10-23 21:15:54,562 epoch 4 - iter 220/447 - loss 0.04291677 - time (sec): 20.20 - samples/sec: 2110.96 - lr: 0.000036 - momentum: 0.000000
391
+ 2023-10-23 21:15:58,592 epoch 4 - iter 264/447 - loss 0.04298733 - time (sec): 24.23 - samples/sec: 2118.23 - lr: 0.000036 - momentum: 0.000000
392
+ 2023-10-23 21:16:02,830 epoch 4 - iter 308/447 - loss 0.04222533 - time (sec): 28.47 - samples/sec: 2119.43 - lr: 0.000035 - momentum: 0.000000
393
+ 2023-10-23 21:16:06,714 epoch 4 - iter 352/447 - loss 0.04257038 - time (sec): 32.35 - samples/sec: 2124.33 - lr: 0.000035 - momentum: 0.000000
394
+ 2023-10-23 21:16:10,630 epoch 4 - iter 396/447 - loss 0.04389888 - time (sec): 36.27 - samples/sec: 2125.21 - lr: 0.000034 - momentum: 0.000000
395
+ 2023-10-23 21:16:14,412 epoch 4 - iter 440/447 - loss 0.04468753 - time (sec): 40.05 - samples/sec: 2129.68 - lr: 0.000033 - momentum: 0.000000
396
+ 2023-10-23 21:16:15,005 ----------------------------------------------------------------------------------------------------
397
+ 2023-10-23 21:16:15,005 EPOCH 4 done: loss 0.0453 - lr: 0.000033
398
+ 2023-10-23 21:16:21,523 DEV : loss 0.16867585480213165 - f1-score (micro avg) 0.7202
399
+ 2023-10-23 21:16:21,543 ----------------------------------------------------------------------------------------------------
400
+ 2023-10-23 21:16:25,550 epoch 5 - iter 44/447 - loss 0.03485991 - time (sec): 4.01 - samples/sec: 2168.92 - lr: 0.000033 - momentum: 0.000000
401
+ 2023-10-23 21:16:29,651 epoch 5 - iter 88/447 - loss 0.03804560 - time (sec): 8.11 - samples/sec: 2075.96 - lr: 0.000032 - momentum: 0.000000
402
+ 2023-10-23 21:16:33,407 epoch 5 - iter 132/447 - loss 0.03565243 - time (sec): 11.86 - samples/sec: 2092.94 - lr: 0.000032 - momentum: 0.000000
403
+ 2023-10-23 21:16:37,779 epoch 5 - iter 176/447 - loss 0.03560807 - time (sec): 16.23 - samples/sec: 2102.25 - lr: 0.000031 - momentum: 0.000000
404
+ 2023-10-23 21:16:41,635 epoch 5 - iter 220/447 - loss 0.03534608 - time (sec): 20.09 - samples/sec: 2103.62 - lr: 0.000031 - momentum: 0.000000
405
+ 2023-10-23 21:16:45,439 epoch 5 - iter 264/447 - loss 0.03359264 - time (sec): 23.90 - samples/sec: 2104.31 - lr: 0.000030 - momentum: 0.000000
406
+ 2023-10-23 21:16:49,900 epoch 5 - iter 308/447 - loss 0.03114445 - time (sec): 28.36 - samples/sec: 2110.97 - lr: 0.000030 - momentum: 0.000000
407
+ 2023-10-23 21:16:53,842 epoch 5 - iter 352/447 - loss 0.03263717 - time (sec): 32.30 - samples/sec: 2113.97 - lr: 0.000029 - momentum: 0.000000
408
+ 2023-10-23 21:16:57,757 epoch 5 - iter 396/447 - loss 0.03153033 - time (sec): 36.21 - samples/sec: 2127.60 - lr: 0.000028 - momentum: 0.000000
409
+ 2023-10-23 21:17:01,544 epoch 5 - iter 440/447 - loss 0.03214773 - time (sec): 40.00 - samples/sec: 2136.26 - lr: 0.000028 - momentum: 0.000000
410
+ 2023-10-23 21:17:02,105 ----------------------------------------------------------------------------------------------------
411
+ 2023-10-23 21:17:02,105 EPOCH 5 done: loss 0.0318 - lr: 0.000028
412
+ 2023-10-23 21:17:08,620 DEV : loss 0.19214682281017303 - f1-score (micro avg) 0.7459
413
+ 2023-10-23 21:17:08,640 saving best model
414
+ 2023-10-23 21:17:09,235 ----------------------------------------------------------------------------------------------------
415
+ 2023-10-23 21:17:13,106 epoch 6 - iter 44/447 - loss 0.02105748 - time (sec): 3.87 - samples/sec: 2043.91 - lr: 0.000027 - momentum: 0.000000
416
+ 2023-10-23 21:17:17,057 epoch 6 - iter 88/447 - loss 0.01726201 - time (sec): 7.82 - samples/sec: 2046.65 - lr: 0.000027 - momentum: 0.000000
417
+ 2023-10-23 21:17:21,186 epoch 6 - iter 132/447 - loss 0.01949802 - time (sec): 11.95 - samples/sec: 2075.00 - lr: 0.000026 - momentum: 0.000000
418
+ 2023-10-23 21:17:25,225 epoch 6 - iter 176/447 - loss 0.02190376 - time (sec): 15.99 - samples/sec: 2125.97 - lr: 0.000026 - momentum: 0.000000
419
+ 2023-10-23 21:17:29,209 epoch 6 - iter 220/447 - loss 0.02099074 - time (sec): 19.97 - samples/sec: 2137.11 - lr: 0.000025 - momentum: 0.000000
420
+ 2023-10-23 21:17:33,283 epoch 6 - iter 264/447 - loss 0.02173912 - time (sec): 24.05 - samples/sec: 2116.13 - lr: 0.000025 - momentum: 0.000000
421
+ 2023-10-23 21:17:37,096 epoch 6 - iter 308/447 - loss 0.02086471 - time (sec): 27.86 - samples/sec: 2127.79 - lr: 0.000024 - momentum: 0.000000
422
+ 2023-10-23 21:17:41,021 epoch 6 - iter 352/447 - loss 0.02351890 - time (sec): 31.79 - samples/sec: 2134.36 - lr: 0.000023 - momentum: 0.000000
423
+ 2023-10-23 21:17:45,297 epoch 6 - iter 396/447 - loss 0.02301478 - time (sec): 36.06 - samples/sec: 2126.14 - lr: 0.000023 - momentum: 0.000000
424
+ 2023-10-23 21:17:49,167 epoch 6 - iter 440/447 - loss 0.02345262 - time (sec): 39.93 - samples/sec: 2139.26 - lr: 0.000022 - momentum: 0.000000
425
+ 2023-10-23 21:17:49,731 ----------------------------------------------------------------------------------------------------
426
+ 2023-10-23 21:17:49,731 EPOCH 6 done: loss 0.0235 - lr: 0.000022
427
+ 2023-10-23 21:17:56,209 DEV : loss 0.20100656151771545 - f1-score (micro avg) 0.7432
428
+ 2023-10-23 21:17:56,230 ----------------------------------------------------------------------------------------------------
429
+ 2023-10-23 21:17:59,954 epoch 7 - iter 44/447 - loss 0.01434631 - time (sec): 3.72 - samples/sec: 2231.02 - lr: 0.000022 - momentum: 0.000000
430
+ 2023-10-23 21:18:04,021 epoch 7 - iter 88/447 - loss 0.01477926 - time (sec): 7.79 - samples/sec: 2170.43 - lr: 0.000021 - momentum: 0.000000
431
+ 2023-10-23 21:18:08,514 epoch 7 - iter 132/447 - loss 0.01339597 - time (sec): 12.28 - samples/sec: 2143.01 - lr: 0.000021 - momentum: 0.000000
432
+ 2023-10-23 21:18:12,450 epoch 7 - iter 176/447 - loss 0.01300304 - time (sec): 16.22 - samples/sec: 2141.35 - lr: 0.000020 - momentum: 0.000000
433
+ 2023-10-23 21:18:16,367 epoch 7 - iter 220/447 - loss 0.01258631 - time (sec): 20.14 - samples/sec: 2136.94 - lr: 0.000020 - momentum: 0.000000
434
+ 2023-10-23 21:18:20,436 epoch 7 - iter 264/447 - loss 0.01333364 - time (sec): 24.21 - samples/sec: 2137.91 - lr: 0.000019 - momentum: 0.000000
435
+ 2023-10-23 21:18:24,476 epoch 7 - iter 308/447 - loss 0.01331886 - time (sec): 28.25 - samples/sec: 2133.18 - lr: 0.000018 - momentum: 0.000000
436
+ 2023-10-23 21:18:28,262 epoch 7 - iter 352/447 - loss 0.01320475 - time (sec): 32.03 - samples/sec: 2135.10 - lr: 0.000018 - momentum: 0.000000
437
+ 2023-10-23 21:18:32,184 epoch 7 - iter 396/447 - loss 0.01306538 - time (sec): 35.95 - samples/sec: 2141.97 - lr: 0.000017 - momentum: 0.000000
438
+ 2023-10-23 21:18:36,080 epoch 7 - iter 440/447 - loss 0.01247335 - time (sec): 39.85 - samples/sec: 2144.78 - lr: 0.000017 - momentum: 0.000000
439
+ 2023-10-23 21:18:36,627 ----------------------------------------------------------------------------------------------------
440
+ 2023-10-23 21:18:36,627 EPOCH 7 done: loss 0.0123 - lr: 0.000017
441
+ 2023-10-23 21:18:43,096 DEV : loss 0.2460336685180664 - f1-score (micro avg) 0.7548
442
+ 2023-10-23 21:18:43,116 saving best model
443
+ 2023-10-23 21:18:43,685 ----------------------------------------------------------------------------------------------------
444
+ 2023-10-23 21:18:47,540 epoch 8 - iter 44/447 - loss 0.01600473 - time (sec): 3.85 - samples/sec: 2174.01 - lr: 0.000016 - momentum: 0.000000
445
+ 2023-10-23 21:18:51,458 epoch 8 - iter 88/447 - loss 0.01261638 - time (sec): 7.77 - samples/sec: 2168.27 - lr: 0.000016 - momentum: 0.000000
446
+ 2023-10-23 21:18:55,297 epoch 8 - iter 132/447 - loss 0.01097643 - time (sec): 11.61 - samples/sec: 2125.13 - lr: 0.000015 - momentum: 0.000000
447
+ 2023-10-23 21:18:59,926 epoch 8 - iter 176/447 - loss 0.00839399 - time (sec): 16.24 - samples/sec: 2140.26 - lr: 0.000015 - momentum: 0.000000
448
+ 2023-10-23 21:19:03,883 epoch 8 - iter 220/447 - loss 0.00700836 - time (sec): 20.20 - samples/sec: 2146.24 - lr: 0.000014 - momentum: 0.000000
449
+ 2023-10-23 21:19:07,540 epoch 8 - iter 264/447 - loss 0.00658404 - time (sec): 23.85 - samples/sec: 2123.74 - lr: 0.000013 - momentum: 0.000000
450
+ 2023-10-23 21:19:11,710 epoch 8 - iter 308/447 - loss 0.00672887 - time (sec): 28.02 - samples/sec: 2123.98 - lr: 0.000013 - momentum: 0.000000
451
+ 2023-10-23 21:19:15,680 epoch 8 - iter 352/447 - loss 0.00730350 - time (sec): 31.99 - samples/sec: 2126.26 - lr: 0.000012 - momentum: 0.000000
452
+ 2023-10-23 21:19:20,096 epoch 8 - iter 396/447 - loss 0.00757808 - time (sec): 36.41 - samples/sec: 2121.30 - lr: 0.000012 - momentum: 0.000000
453
+ 2023-10-23 21:19:23,827 epoch 8 - iter 440/447 - loss 0.00721160 - time (sec): 40.14 - samples/sec: 2121.34 - lr: 0.000011 - momentum: 0.000000
454
+ 2023-10-23 21:19:24,443 ----------------------------------------------------------------------------------------------------
455
+ 2023-10-23 21:19:24,444 EPOCH 8 done: loss 0.0080 - lr: 0.000011
456
+ 2023-10-23 21:19:30,630 DEV : loss 0.26853764057159424 - f1-score (micro avg) 0.7664
457
+ 2023-10-23 21:19:30,651 saving best model
458
+ 2023-10-23 21:19:31,246 ----------------------------------------------------------------------------------------------------
459
+ 2023-10-23 21:19:34,871 epoch 9 - iter 44/447 - loss 0.00413003 - time (sec): 3.62 - samples/sec: 2217.26 - lr: 0.000011 - momentum: 0.000000
460
+ 2023-10-23 21:19:39,173 epoch 9 - iter 88/447 - loss 0.00874300 - time (sec): 7.93 - samples/sec: 2054.24 - lr: 0.000010 - momentum: 0.000000
461
+ 2023-10-23 21:19:43,410 epoch 9 - iter 132/447 - loss 0.00637939 - time (sec): 12.16 - samples/sec: 2070.73 - lr: 0.000010 - momentum: 0.000000
462
+ 2023-10-23 21:19:47,231 epoch 9 - iter 176/447 - loss 0.00677074 - time (sec): 15.98 - samples/sec: 2104.57 - lr: 0.000009 - momentum: 0.000000
463
+ 2023-10-23 21:19:51,199 epoch 9 - iter 220/447 - loss 0.00601290 - time (sec): 19.95 - samples/sec: 2121.37 - lr: 0.000008 - momentum: 0.000000
464
+ 2023-10-23 21:19:55,456 epoch 9 - iter 264/447 - loss 0.00551771 - time (sec): 24.21 - samples/sec: 2124.91 - lr: 0.000008 - momentum: 0.000000
465
+ 2023-10-23 21:19:59,708 epoch 9 - iter 308/447 - loss 0.00532185 - time (sec): 28.46 - samples/sec: 2127.58 - lr: 0.000007 - momentum: 0.000000
466
+ 2023-10-23 21:20:03,460 epoch 9 - iter 352/447 - loss 0.00602318 - time (sec): 32.21 - samples/sec: 2127.14 - lr: 0.000007 - momentum: 0.000000
467
+ 2023-10-23 21:20:07,201 epoch 9 - iter 396/447 - loss 0.00619570 - time (sec): 35.95 - samples/sec: 2132.79 - lr: 0.000006 - momentum: 0.000000
468
+ 2023-10-23 21:20:11,227 epoch 9 - iter 440/447 - loss 0.00584523 - time (sec): 39.98 - samples/sec: 2135.91 - lr: 0.000006 - momentum: 0.000000
469
+ 2023-10-23 21:20:11,853 ----------------------------------------------------------------------------------------------------
470
+ 2023-10-23 21:20:11,854 EPOCH 9 done: loss 0.0058 - lr: 0.000006
471
+ 2023-10-23 21:20:18,089 DEV : loss 0.259550541639328 - f1-score (micro avg) 0.768
472
+ 2023-10-23 21:20:18,110 saving best model
473
+ 2023-10-23 21:20:18,700 ----------------------------------------------------------------------------------------------------
474
+ 2023-10-23 21:20:22,576 epoch 10 - iter 44/447 - loss 0.00028617 - time (sec): 3.88 - samples/sec: 2214.84 - lr: 0.000005 - momentum: 0.000000
475
+ 2023-10-23 21:20:26,741 epoch 10 - iter 88/447 - loss 0.00036442 - time (sec): 8.04 - samples/sec: 2165.17 - lr: 0.000005 - momentum: 0.000000
476
+ 2023-10-23 21:20:30,674 epoch 10 - iter 132/447 - loss 0.00123632 - time (sec): 11.97 - samples/sec: 2150.91 - lr: 0.000004 - momentum: 0.000000
477
+ 2023-10-23 21:20:34,613 epoch 10 - iter 176/447 - loss 0.00181556 - time (sec): 15.91 - samples/sec: 2137.75 - lr: 0.000003 - momentum: 0.000000
478
+ 2023-10-23 21:20:38,919 epoch 10 - iter 220/447 - loss 0.00290602 - time (sec): 20.22 - samples/sec: 2145.60 - lr: 0.000003 - momentum: 0.000000
479
+ 2023-10-23 21:20:42,689 epoch 10 - iter 264/447 - loss 0.00253256 - time (sec): 23.99 - samples/sec: 2136.16 - lr: 0.000002 - momentum: 0.000000
480
+ 2023-10-23 21:20:46,503 epoch 10 - iter 308/447 - loss 0.00278757 - time (sec): 27.80 - samples/sec: 2147.54 - lr: 0.000002 - momentum: 0.000000
481
+ 2023-10-23 21:20:50,596 epoch 10 - iter 352/447 - loss 0.00244091 - time (sec): 31.90 - samples/sec: 2139.99 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-23 21:20:54,908 epoch 10 - iter 396/447 - loss 0.00254504 - time (sec): 36.21 - samples/sec: 2122.45 - lr: 0.000001 - momentum: 0.000000
483
+ 2023-10-23 21:20:58,966 epoch 10 - iter 440/447 - loss 0.00280141 - time (sec): 40.27 - samples/sec: 2116.87 - lr: 0.000000 - momentum: 0.000000
484
+ 2023-10-23 21:20:59,589 ----------------------------------------------------------------------------------------------------
485
+ 2023-10-23 21:20:59,589 EPOCH 10 done: loss 0.0028 - lr: 0.000000
486
+ 2023-10-23 21:21:05,787 DEV : loss 0.269205242395401 - f1-score (micro avg) 0.7664
487
+ 2023-10-23 21:21:06,277 ----------------------------------------------------------------------------------------------------
488
+ 2023-10-23 21:21:06,278 Loading model from best epoch ...
489
+ 2023-10-23 21:21:07,876 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
490
+ 2023-10-23 21:21:12,685
491
+ Results:
492
+ - F-score (micro) 0.7505
493
+ - F-score (macro) 0.6658
494
+ - Accuracy 0.6185
495
+
496
+ By class:
497
+ precision recall f1-score support
498
+
499
+ loc 0.8249 0.8456 0.8351 596
500
+ pers 0.6959 0.7628 0.7278 333
501
+ org 0.5469 0.5303 0.5385 132
502
+ prod 0.6066 0.5606 0.5827 66
503
+ time 0.6818 0.6122 0.6452 49
504
+
505
+ micro avg 0.7403 0.7611 0.7505 1176
506
+ macro avg 0.6712 0.6623 0.6658 1176
507
+ weighted avg 0.7389 0.7611 0.7494 1176
508
+
509
+ 2023-10-23 21:21:12,685 ----------------------------------------------------------------------------------------------------