Upload ./training.log with huggingface_hub
Browse files- training.log +508 -0
training.log
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 19:54:00,819 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 19:54:00,820 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 19:54:00,820 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 19:54:00,820 MultiCorpus: 966 train + 219 dev + 204 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
|
317 |
+
2023-10-23 19:54:00,820 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 19:54:00,820 Train: 966 sentences
|
319 |
+
2023-10-23 19:54:00,820 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 19:54:00,821 Training Params:
|
322 |
+
2023-10-23 19:54:00,821 - learning_rate: "5e-05"
|
323 |
+
2023-10-23 19:54:00,821 - mini_batch_size: "4"
|
324 |
+
2023-10-23 19:54:00,821 - max_epochs: "10"
|
325 |
+
2023-10-23 19:54:00,821 - shuffle: "True"
|
326 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 19:54:00,821 Plugins:
|
328 |
+
2023-10-23 19:54:00,821 - TensorboardLogger
|
329 |
+
2023-10-23 19:54:00,821 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 19:54:00,821 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 19:54:00,821 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 19:54:00,821 Computation:
|
335 |
+
2023-10-23 19:54:00,821 - compute on device: cuda:0
|
336 |
+
2023-10-23 19:54:00,821 - embedding storage: none
|
337 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 19:54:00,821 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 19:54:00,821 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 19:54:00,821 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 19:54:02,281 epoch 1 - iter 24/242 - loss 3.02908177 - time (sec): 1.46 - samples/sec: 1576.51 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-23 19:54:03,837 epoch 1 - iter 48/242 - loss 2.01798402 - time (sec): 3.02 - samples/sec: 1707.17 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-23 19:54:05,327 epoch 1 - iter 72/242 - loss 1.55185778 - time (sec): 4.51 - samples/sec: 1660.01 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-23 19:54:06,844 epoch 1 - iter 96/242 - loss 1.27186543 - time (sec): 6.02 - samples/sec: 1651.27 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-23 19:54:08,397 epoch 1 - iter 120/242 - loss 1.10527967 - time (sec): 7.58 - samples/sec: 1640.93 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-23 19:54:09,937 epoch 1 - iter 144/242 - loss 0.99645057 - time (sec): 9.12 - samples/sec: 1618.66 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-23 19:54:11,465 epoch 1 - iter 168/242 - loss 0.89381082 - time (sec): 10.64 - samples/sec: 1623.01 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-23 19:54:12,985 epoch 1 - iter 192/242 - loss 0.81345984 - time (sec): 12.16 - samples/sec: 1621.73 - lr: 0.000039 - momentum: 0.000000
|
350 |
+
2023-10-23 19:54:14,550 epoch 1 - iter 216/242 - loss 0.74715069 - time (sec): 13.73 - samples/sec: 1614.81 - lr: 0.000044 - momentum: 0.000000
|
351 |
+
2023-10-23 19:54:16,032 epoch 1 - iter 240/242 - loss 0.69305886 - time (sec): 15.21 - samples/sec: 1609.87 - lr: 0.000049 - momentum: 0.000000
|
352 |
+
2023-10-23 19:54:16,153 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 19:54:16,153 EPOCH 1 done: loss 0.6874 - lr: 0.000049
|
354 |
+
2023-10-23 19:54:16,774 DEV : loss 0.1657165139913559 - f1-score (micro avg) 0.6499
|
355 |
+
2023-10-23 19:54:16,777 saving best model
|
356 |
+
2023-10-23 19:54:17,252 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 19:54:18,776 epoch 2 - iter 24/242 - loss 0.18982989 - time (sec): 1.52 - samples/sec: 1642.03 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-23 19:54:20,312 epoch 2 - iter 48/242 - loss 0.16868344 - time (sec): 3.06 - samples/sec: 1615.20 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-23 19:54:21,820 epoch 2 - iter 72/242 - loss 0.16378782 - time (sec): 4.57 - samples/sec: 1640.75 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-23 19:54:23,321 epoch 2 - iter 96/242 - loss 0.16854221 - time (sec): 6.07 - samples/sec: 1629.22 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-23 19:54:24,864 epoch 2 - iter 120/242 - loss 0.15458604 - time (sec): 7.61 - samples/sec: 1620.40 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-23 19:54:26,386 epoch 2 - iter 144/242 - loss 0.14810813 - time (sec): 9.13 - samples/sec: 1610.74 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-23 19:54:27,917 epoch 2 - iter 168/242 - loss 0.15025063 - time (sec): 10.66 - samples/sec: 1618.47 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-23 19:54:29,451 epoch 2 - iter 192/242 - loss 0.15010035 - time (sec): 12.20 - samples/sec: 1614.30 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-23 19:54:30,942 epoch 2 - iter 216/242 - loss 0.14614517 - time (sec): 13.69 - samples/sec: 1614.79 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-23 19:54:32,442 epoch 2 - iter 240/242 - loss 0.14967479 - time (sec): 15.19 - samples/sec: 1615.52 - lr: 0.000045 - momentum: 0.000000
|
367 |
+
2023-10-23 19:54:32,569 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 19:54:32,569 EPOCH 2 done: loss 0.1501 - lr: 0.000045
|
369 |
+
2023-10-23 19:54:33,262 DEV : loss 0.11106210947036743 - f1-score (micro avg) 0.7985
|
370 |
+
2023-10-23 19:54:33,265 saving best model
|
371 |
+
2023-10-23 19:54:33,862 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 19:54:35,340 epoch 3 - iter 24/242 - loss 0.07707799 - time (sec): 1.48 - samples/sec: 1548.37 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-23 19:54:36,872 epoch 3 - iter 48/242 - loss 0.09733679 - time (sec): 3.01 - samples/sec: 1521.98 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-23 19:54:38,464 epoch 3 - iter 72/242 - loss 0.09180546 - time (sec): 4.60 - samples/sec: 1582.02 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-23 19:54:39,994 epoch 3 - iter 96/242 - loss 0.08892388 - time (sec): 6.13 - samples/sec: 1570.15 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-23 19:54:41,515 epoch 3 - iter 120/242 - loss 0.09754773 - time (sec): 7.65 - samples/sec: 1610.29 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-23 19:54:43,025 epoch 3 - iter 144/242 - loss 0.09629438 - time (sec): 9.16 - samples/sec: 1588.40 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-23 19:54:44,566 epoch 3 - iter 168/242 - loss 0.09584241 - time (sec): 10.70 - samples/sec: 1608.85 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-23 19:54:46,056 epoch 3 - iter 192/242 - loss 0.09380987 - time (sec): 12.19 - samples/sec: 1601.31 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-23 19:54:47,580 epoch 3 - iter 216/242 - loss 0.09142753 - time (sec): 13.72 - samples/sec: 1596.57 - lr: 0.000040 - momentum: 0.000000
|
381 |
+
2023-10-23 19:54:49,116 epoch 3 - iter 240/242 - loss 0.09182178 - time (sec): 15.25 - samples/sec: 1610.18 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-23 19:54:49,240 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 19:54:49,240 EPOCH 3 done: loss 0.0913 - lr: 0.000039
|
384 |
+
2023-10-23 19:54:49,930 DEV : loss 0.1296485811471939 - f1-score (micro avg) 0.8445
|
385 |
+
2023-10-23 19:54:49,934 saving best model
|
386 |
+
2023-10-23 19:54:50,608 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 19:54:52,082 epoch 4 - iter 24/242 - loss 0.04930126 - time (sec): 1.47 - samples/sec: 1585.43 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-23 19:54:53,635 epoch 4 - iter 48/242 - loss 0.06258024 - time (sec): 3.03 - samples/sec: 1609.31 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-23 19:54:55,129 epoch 4 - iter 72/242 - loss 0.05973513 - time (sec): 4.52 - samples/sec: 1589.01 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-23 19:54:56,767 epoch 4 - iter 96/242 - loss 0.06641017 - time (sec): 6.16 - samples/sec: 1553.52 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-23 19:54:58,286 epoch 4 - iter 120/242 - loss 0.06616114 - time (sec): 7.68 - samples/sec: 1564.09 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-23 19:54:59,778 epoch 4 - iter 144/242 - loss 0.06088754 - time (sec): 9.17 - samples/sec: 1542.98 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-23 19:55:01,289 epoch 4 - iter 168/242 - loss 0.05839909 - time (sec): 10.68 - samples/sec: 1538.46 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-23 19:55:02,865 epoch 4 - iter 192/242 - loss 0.06217878 - time (sec): 12.26 - samples/sec: 1572.94 - lr: 0.000035 - momentum: 0.000000
|
395 |
+
2023-10-23 19:55:04,432 epoch 4 - iter 216/242 - loss 0.06618679 - time (sec): 13.82 - samples/sec: 1592.46 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-23 19:55:05,976 epoch 4 - iter 240/242 - loss 0.06638804 - time (sec): 15.37 - samples/sec: 1599.35 - lr: 0.000033 - momentum: 0.000000
|
397 |
+
2023-10-23 19:55:06,100 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 19:55:06,100 EPOCH 4 done: loss 0.0663 - lr: 0.000033
|
399 |
+
2023-10-23 19:55:06,793 DEV : loss 0.15876781940460205 - f1-score (micro avg) 0.8224
|
400 |
+
2023-10-23 19:55:06,797 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-23 19:55:08,308 epoch 5 - iter 24/242 - loss 0.06022989 - time (sec): 1.51 - samples/sec: 1664.44 - lr: 0.000033 - momentum: 0.000000
|
402 |
+
2023-10-23 19:55:09,836 epoch 5 - iter 48/242 - loss 0.03978630 - time (sec): 3.04 - samples/sec: 1652.27 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-23 19:55:11,382 epoch 5 - iter 72/242 - loss 0.04483749 - time (sec): 4.59 - samples/sec: 1647.08 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-23 19:55:12,870 epoch 5 - iter 96/242 - loss 0.04800811 - time (sec): 6.07 - samples/sec: 1644.63 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-23 19:55:14,402 epoch 5 - iter 120/242 - loss 0.05006269 - time (sec): 7.61 - samples/sec: 1659.16 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-23 19:55:15,876 epoch 5 - iter 144/242 - loss 0.05146417 - time (sec): 9.08 - samples/sec: 1642.85 - lr: 0.000030 - momentum: 0.000000
|
407 |
+
2023-10-23 19:55:17,402 epoch 5 - iter 168/242 - loss 0.05069314 - time (sec): 10.60 - samples/sec: 1634.40 - lr: 0.000030 - momentum: 0.000000
|
408 |
+
2023-10-23 19:55:18,898 epoch 5 - iter 192/242 - loss 0.04770876 - time (sec): 12.10 - samples/sec: 1640.86 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2023-10-23 19:55:20,461 epoch 5 - iter 216/242 - loss 0.05091984 - time (sec): 13.66 - samples/sec: 1644.77 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-23 19:55:21,993 epoch 5 - iter 240/242 - loss 0.05083321 - time (sec): 15.20 - samples/sec: 1623.55 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-23 19:55:22,102 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-23 19:55:22,102 EPOCH 5 done: loss 0.0507 - lr: 0.000028
|
413 |
+
2023-10-23 19:55:22,797 DEV : loss 0.1611303985118866 - f1-score (micro avg) 0.8348
|
414 |
+
2023-10-23 19:55:22,801 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-23 19:55:24,316 epoch 6 - iter 24/242 - loss 0.02656180 - time (sec): 1.51 - samples/sec: 1737.41 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-23 19:55:25,864 epoch 6 - iter 48/242 - loss 0.02741681 - time (sec): 3.06 - samples/sec: 1626.39 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-23 19:55:27,418 epoch 6 - iter 72/242 - loss 0.02911125 - time (sec): 4.62 - samples/sec: 1645.52 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-23 19:55:28,925 epoch 6 - iter 96/242 - loss 0.03691839 - time (sec): 6.12 - samples/sec: 1658.26 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-23 19:55:30,444 epoch 6 - iter 120/242 - loss 0.03816996 - time (sec): 7.64 - samples/sec: 1626.27 - lr: 0.000025 - momentum: 0.000000
|
420 |
+
2023-10-23 19:55:31,981 epoch 6 - iter 144/242 - loss 0.03656373 - time (sec): 9.18 - samples/sec: 1609.95 - lr: 0.000025 - momentum: 0.000000
|
421 |
+
2023-10-23 19:55:33,481 epoch 6 - iter 168/242 - loss 0.03486906 - time (sec): 10.68 - samples/sec: 1613.60 - lr: 0.000024 - momentum: 0.000000
|
422 |
+
2023-10-23 19:55:34,990 epoch 6 - iter 192/242 - loss 0.03680509 - time (sec): 12.19 - samples/sec: 1606.30 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-23 19:55:36,521 epoch 6 - iter 216/242 - loss 0.03411852 - time (sec): 13.72 - samples/sec: 1601.19 - lr: 0.000023 - momentum: 0.000000
|
424 |
+
2023-10-23 19:55:38,025 epoch 6 - iter 240/242 - loss 0.03417563 - time (sec): 15.22 - samples/sec: 1613.46 - lr: 0.000022 - momentum: 0.000000
|
425 |
+
2023-10-23 19:55:38,148 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-23 19:55:38,148 EPOCH 6 done: loss 0.0339 - lr: 0.000022
|
427 |
+
2023-10-23 19:55:38,846 DEV : loss 0.18326157331466675 - f1-score (micro avg) 0.8343
|
428 |
+
2023-10-23 19:55:38,850 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-23 19:55:40,333 epoch 7 - iter 24/242 - loss 0.02051287 - time (sec): 1.48 - samples/sec: 1610.34 - lr: 0.000022 - momentum: 0.000000
|
430 |
+
2023-10-23 19:55:41,826 epoch 7 - iter 48/242 - loss 0.02832778 - time (sec): 2.98 - samples/sec: 1546.30 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-23 19:55:43,364 epoch 7 - iter 72/242 - loss 0.02435630 - time (sec): 4.51 - samples/sec: 1541.24 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-23 19:55:44,863 epoch 7 - iter 96/242 - loss 0.02003073 - time (sec): 6.01 - samples/sec: 1540.81 - lr: 0.000020 - momentum: 0.000000
|
433 |
+
2023-10-23 19:55:46,337 epoch 7 - iter 120/242 - loss 0.02455821 - time (sec): 7.49 - samples/sec: 1542.93 - lr: 0.000020 - momentum: 0.000000
|
434 |
+
2023-10-23 19:55:47,901 epoch 7 - iter 144/242 - loss 0.02202070 - time (sec): 9.05 - samples/sec: 1576.40 - lr: 0.000019 - momentum: 0.000000
|
435 |
+
2023-10-23 19:55:49,479 epoch 7 - iter 168/242 - loss 0.02747623 - time (sec): 10.63 - samples/sec: 1600.40 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-23 19:55:50,984 epoch 7 - iter 192/242 - loss 0.02707506 - time (sec): 12.13 - samples/sec: 1601.11 - lr: 0.000018 - momentum: 0.000000
|
437 |
+
2023-10-23 19:55:52,548 epoch 7 - iter 216/242 - loss 0.02899112 - time (sec): 13.70 - samples/sec: 1611.34 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-23 19:55:54,078 epoch 7 - iter 240/242 - loss 0.02860385 - time (sec): 15.23 - samples/sec: 1617.70 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-23 19:55:54,194 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-23 19:55:54,194 EPOCH 7 done: loss 0.0298 - lr: 0.000017
|
441 |
+
2023-10-23 19:55:54,888 DEV : loss 0.20003901422023773 - f1-score (micro avg) 0.8501
|
442 |
+
2023-10-23 19:55:54,892 saving best model
|
443 |
+
2023-10-23 19:55:55,556 ----------------------------------------------------------------------------------------------------
|
444 |
+
2023-10-23 19:55:57,088 epoch 8 - iter 24/242 - loss 0.01561098 - time (sec): 1.53 - samples/sec: 1623.00 - lr: 0.000016 - momentum: 0.000000
|
445 |
+
2023-10-23 19:55:58,567 epoch 8 - iter 48/242 - loss 0.02032853 - time (sec): 3.01 - samples/sec: 1623.61 - lr: 0.000016 - momentum: 0.000000
|
446 |
+
2023-10-23 19:56:00,093 epoch 8 - iter 72/242 - loss 0.01578867 - time (sec): 4.54 - samples/sec: 1682.93 - lr: 0.000015 - momentum: 0.000000
|
447 |
+
2023-10-23 19:56:01,621 epoch 8 - iter 96/242 - loss 0.01385398 - time (sec): 6.06 - samples/sec: 1664.02 - lr: 0.000015 - momentum: 0.000000
|
448 |
+
2023-10-23 19:56:03,094 epoch 8 - iter 120/242 - loss 0.01185117 - time (sec): 7.54 - samples/sec: 1640.94 - lr: 0.000014 - momentum: 0.000000
|
449 |
+
2023-10-23 19:56:04,602 epoch 8 - iter 144/242 - loss 0.01327037 - time (sec): 9.04 - samples/sec: 1624.26 - lr: 0.000013 - momentum: 0.000000
|
450 |
+
2023-10-23 19:56:06,155 epoch 8 - iter 168/242 - loss 0.01408385 - time (sec): 10.60 - samples/sec: 1620.78 - lr: 0.000013 - momentum: 0.000000
|
451 |
+
2023-10-23 19:56:07,716 epoch 8 - iter 192/242 - loss 0.01512167 - time (sec): 12.16 - samples/sec: 1635.44 - lr: 0.000012 - momentum: 0.000000
|
452 |
+
2023-10-23 19:56:09,228 epoch 8 - iter 216/242 - loss 0.01548915 - time (sec): 13.67 - samples/sec: 1630.38 - lr: 0.000012 - momentum: 0.000000
|
453 |
+
2023-10-23 19:56:10,757 epoch 8 - iter 240/242 - loss 0.01551029 - time (sec): 15.20 - samples/sec: 1621.75 - lr: 0.000011 - momentum: 0.000000
|
454 |
+
2023-10-23 19:56:10,870 ----------------------------------------------------------------------------------------------------
|
455 |
+
2023-10-23 19:56:10,870 EPOCH 8 done: loss 0.0156 - lr: 0.000011
|
456 |
+
2023-10-23 19:56:11,563 DEV : loss 0.2106192260980606 - f1-score (micro avg) 0.8398
|
457 |
+
2023-10-23 19:56:11,567 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-23 19:56:13,112 epoch 9 - iter 24/242 - loss 0.00846013 - time (sec): 1.54 - samples/sec: 1685.13 - lr: 0.000011 - momentum: 0.000000
|
459 |
+
2023-10-23 19:56:14,632 epoch 9 - iter 48/242 - loss 0.00695458 - time (sec): 3.06 - samples/sec: 1664.04 - lr: 0.000010 - momentum: 0.000000
|
460 |
+
2023-10-23 19:56:16,161 epoch 9 - iter 72/242 - loss 0.01033016 - time (sec): 4.59 - samples/sec: 1639.21 - lr: 0.000010 - momentum: 0.000000
|
461 |
+
2023-10-23 19:56:17,662 epoch 9 - iter 96/242 - loss 0.00825252 - time (sec): 6.09 - samples/sec: 1615.59 - lr: 0.000009 - momentum: 0.000000
|
462 |
+
2023-10-23 19:56:19,129 epoch 9 - iter 120/242 - loss 0.00685529 - time (sec): 7.56 - samples/sec: 1571.75 - lr: 0.000008 - momentum: 0.000000
|
463 |
+
2023-10-23 19:56:20,687 epoch 9 - iter 144/242 - loss 0.00761663 - time (sec): 9.12 - samples/sec: 1590.50 - lr: 0.000008 - momentum: 0.000000
|
464 |
+
2023-10-23 19:56:22,185 epoch 9 - iter 168/242 - loss 0.00872170 - time (sec): 10.62 - samples/sec: 1591.73 - lr: 0.000007 - momentum: 0.000000
|
465 |
+
2023-10-23 19:56:23,766 epoch 9 - iter 192/242 - loss 0.00777299 - time (sec): 12.20 - samples/sec: 1598.39 - lr: 0.000007 - momentum: 0.000000
|
466 |
+
2023-10-23 19:56:25,303 epoch 9 - iter 216/242 - loss 0.00837163 - time (sec): 13.74 - samples/sec: 1594.82 - lr: 0.000006 - momentum: 0.000000
|
467 |
+
2023-10-23 19:56:26,841 epoch 9 - iter 240/242 - loss 0.00873881 - time (sec): 15.27 - samples/sec: 1611.98 - lr: 0.000006 - momentum: 0.000000
|
468 |
+
2023-10-23 19:56:26,952 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-23 19:56:26,953 EPOCH 9 done: loss 0.0087 - lr: 0.000006
|
470 |
+
2023-10-23 19:56:27,649 DEV : loss 0.21975746750831604 - f1-score (micro avg) 0.8292
|
471 |
+
2023-10-23 19:56:27,653 ----------------------------------------------------------------------------------------------------
|
472 |
+
2023-10-23 19:56:29,187 epoch 10 - iter 24/242 - loss 0.01598168 - time (sec): 1.53 - samples/sec: 1584.96 - lr: 0.000005 - momentum: 0.000000
|
473 |
+
2023-10-23 19:56:30,677 epoch 10 - iter 48/242 - loss 0.01795362 - time (sec): 3.02 - samples/sec: 1503.00 - lr: 0.000005 - momentum: 0.000000
|
474 |
+
2023-10-23 19:56:32,190 epoch 10 - iter 72/242 - loss 0.01314097 - time (sec): 4.54 - samples/sec: 1548.00 - lr: 0.000004 - momentum: 0.000000
|
475 |
+
2023-10-23 19:56:33,784 epoch 10 - iter 96/242 - loss 0.01198160 - time (sec): 6.13 - samples/sec: 1568.31 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-23 19:56:35,280 epoch 10 - iter 120/242 - loss 0.01184489 - time (sec): 7.63 - samples/sec: 1574.95 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-23 19:56:36,807 epoch 10 - iter 144/242 - loss 0.01199912 - time (sec): 9.15 - samples/sec: 1587.15 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-23 19:56:38,372 epoch 10 - iter 168/242 - loss 0.01076440 - time (sec): 10.72 - samples/sec: 1608.19 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-23 19:56:39,918 epoch 10 - iter 192/242 - loss 0.00966567 - time (sec): 12.26 - samples/sec: 1603.60 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-23 19:56:41,460 epoch 10 - iter 216/242 - loss 0.00868111 - time (sec): 13.81 - samples/sec: 1620.18 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-23 19:56:42,971 epoch 10 - iter 240/242 - loss 0.00817940 - time (sec): 15.32 - samples/sec: 1608.99 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-23 19:56:43,082 ----------------------------------------------------------------------------------------------------
|
483 |
+
2023-10-23 19:56:43,082 EPOCH 10 done: loss 0.0081 - lr: 0.000000
|
484 |
+
2023-10-23 19:56:43,779 DEV : loss 0.22472596168518066 - f1-score (micro avg) 0.8257
|
485 |
+
2023-10-23 19:56:44,255 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-23 19:56:44,256 Loading model from best epoch ...
|
487 |
+
2023-10-23 19:56:45,831 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
488 |
+
2023-10-23 19:56:46,685
|
489 |
+
Results:
|
490 |
+
- F-score (micro) 0.8189
|
491 |
+
- F-score (macro) 0.5017
|
492 |
+
- Accuracy 0.7163
|
493 |
+
|
494 |
+
By class:
|
495 |
+
precision recall f1-score support
|
496 |
+
|
497 |
+
pers 0.8611 0.8921 0.8763 139
|
498 |
+
scope 0.8321 0.8837 0.8571 129
|
499 |
+
work 0.6559 0.7625 0.7052 80
|
500 |
+
loc 0.8000 0.4444 0.5714 9
|
501 |
+
date 0.0000 0.0000 0.0000 3
|
502 |
+
object 0.0000 0.0000 0.0000 0
|
503 |
+
|
504 |
+
micro avg 0.7974 0.8417 0.8189 360
|
505 |
+
macro avg 0.5249 0.4971 0.5017 360
|
506 |
+
weighted avg 0.7964 0.8417 0.8165 360
|
507 |
+
|
508 |
+
2023-10-23 19:56:46,686 ----------------------------------------------------------------------------------------------------
|