File size: 26,668 Bytes
ec1db72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Train: 758 sentences
2024-03-26 15:47:36,999 (train_with_dev=False, train_with_test=False)
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Training Params:
2024-03-26 15:47:36,999 - learning_rate: "3e-05"
2024-03-26 15:47:36,999 - mini_batch_size: "16"
2024-03-26 15:47:36,999 - max_epochs: "10"
2024-03-26 15:47:36,999 - shuffle: "True"
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Plugins:
2024-03-26 15:47:36,999 - TensorboardLogger
2024-03-26 15:47:36,999 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:47:36,999 - metric: "('micro avg', 'f1-score')"
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Computation:
2024-03-26 15:47:36,999 - compute on device: cuda:0
2024-03-26 15:47:36,999 - embedding storage: none
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr3e-05-3"
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:36,999 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:37,000 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:47:38,243 epoch 1 - iter 4/48 - loss 3.37379841 - time (sec): 1.24 - samples/sec: 2215.07 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:47:40,206 epoch 1 - iter 8/48 - loss 3.38378942 - time (sec): 3.21 - samples/sec: 1816.61 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:47:41,730 epoch 1 - iter 12/48 - loss 3.35565868 - time (sec): 4.73 - samples/sec: 1770.37 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:47:44,610 epoch 1 - iter 16/48 - loss 3.28068558 - time (sec): 7.61 - samples/sec: 1524.04 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:47:46,256 epoch 1 - iter 20/48 - loss 3.13339846 - time (sec): 9.26 - samples/sec: 1556.12 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:47:47,687 epoch 1 - iter 24/48 - loss 2.99408989 - time (sec): 10.69 - samples/sec: 1606.41 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:47:49,001 epoch 1 - iter 28/48 - loss 2.84824149 - time (sec): 12.00 - samples/sec: 1627.05 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:47:51,083 epoch 1 - iter 32/48 - loss 2.70044326 - time (sec): 14.08 - samples/sec: 1613.86 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:47:52,621 epoch 1 - iter 36/48 - loss 2.57582595 - time (sec): 15.62 - samples/sec: 1633.62 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:47:54,837 epoch 1 - iter 40/48 - loss 2.44489920 - time (sec): 17.84 - samples/sec: 1624.49 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:47:56,731 epoch 1 - iter 44/48 - loss 2.33561949 - time (sec): 19.73 - samples/sec: 1625.16 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:47:58,339 epoch 1 - iter 48/48 - loss 2.24504382 - time (sec): 21.34 - samples/sec: 1615.44 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:47:58,339 ----------------------------------------------------------------------------------------------------
2024-03-26 15:47:58,339 EPOCH 1 done: loss 2.2450 - lr: 0.000029
2024-03-26 15:47:59,148 DEV : loss 0.8031646609306335 - f1-score (micro avg) 0.4656
2024-03-26 15:47:59,149 saving best model
2024-03-26 15:47:59,410 ----------------------------------------------------------------------------------------------------
2024-03-26 15:48:00,812 epoch 2 - iter 4/48 - loss 1.04326321 - time (sec): 1.40 - samples/sec: 1780.71 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:48:02,265 epoch 2 - iter 8/48 - loss 0.87730803 - time (sec): 2.85 - samples/sec: 1710.29 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:48:03,681 epoch 2 - iter 12/48 - loss 0.83901534 - time (sec): 4.27 - samples/sec: 1800.20 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:48:05,535 epoch 2 - iter 16/48 - loss 0.77100321 - time (sec): 6.12 - samples/sec: 1756.57 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:48:07,867 epoch 2 - iter 20/48 - loss 0.73954646 - time (sec): 8.46 - samples/sec: 1676.84 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:48:09,869 epoch 2 - iter 24/48 - loss 0.69136182 - time (sec): 10.46 - samples/sec: 1658.52 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:48:12,567 epoch 2 - iter 28/48 - loss 0.66596220 - time (sec): 13.16 - samples/sec: 1590.53 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:48:14,742 epoch 2 - iter 32/48 - loss 0.64037489 - time (sec): 15.33 - samples/sec: 1556.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:48:16,449 epoch 2 - iter 36/48 - loss 0.62884232 - time (sec): 17.04 - samples/sec: 1550.49 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:48:18,141 epoch 2 - iter 40/48 - loss 0.62020735 - time (sec): 18.73 - samples/sec: 1557.51 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:48:20,284 epoch 2 - iter 44/48 - loss 0.60189604 - time (sec): 20.87 - samples/sec: 1552.36 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:48:21,787 epoch 2 - iter 48/48 - loss 0.58624485 - time (sec): 22.38 - samples/sec: 1540.59 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:48:21,787 ----------------------------------------------------------------------------------------------------
2024-03-26 15:48:21,787 EPOCH 2 done: loss 0.5862 - lr: 0.000027
2024-03-26 15:48:22,767 DEV : loss 0.32458996772766113 - f1-score (micro avg) 0.7892
2024-03-26 15:48:22,768 saving best model
2024-03-26 15:48:23,190 ----------------------------------------------------------------------------------------------------
2024-03-26 15:48:24,682 epoch 3 - iter 4/48 - loss 0.35901192 - time (sec): 1.49 - samples/sec: 1643.98 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:48:27,381 epoch 3 - iter 8/48 - loss 0.31347438 - time (sec): 4.19 - samples/sec: 1367.54 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:48:28,614 epoch 3 - iter 12/48 - loss 0.32826115 - time (sec): 5.42 - samples/sec: 1502.29 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:48:29,957 epoch 3 - iter 16/48 - loss 0.30830080 - time (sec): 6.77 - samples/sec: 1631.60 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:48:31,394 epoch 3 - iter 20/48 - loss 0.31154007 - time (sec): 8.20 - samples/sec: 1647.17 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:48:34,065 epoch 3 - iter 24/48 - loss 0.30431891 - time (sec): 10.87 - samples/sec: 1536.24 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:48:35,947 epoch 3 - iter 28/48 - loss 0.30275570 - time (sec): 12.76 - samples/sec: 1553.88 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:48:38,432 epoch 3 - iter 32/48 - loss 0.29026230 - time (sec): 15.24 - samples/sec: 1496.08 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:48:40,337 epoch 3 - iter 36/48 - loss 0.29110826 - time (sec): 17.14 - samples/sec: 1491.88 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:48:42,660 epoch 3 - iter 40/48 - loss 0.28131814 - time (sec): 19.47 - samples/sec: 1467.23 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:48:45,068 epoch 3 - iter 44/48 - loss 0.28892993 - time (sec): 21.88 - samples/sec: 1454.64 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:48:47,362 epoch 3 - iter 48/48 - loss 0.28042318 - time (sec): 24.17 - samples/sec: 1426.23 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:48:47,362 ----------------------------------------------------------------------------------------------------
2024-03-26 15:48:47,362 EPOCH 3 done: loss 0.2804 - lr: 0.000023
2024-03-26 15:48:48,272 DEV : loss 0.23968861997127533 - f1-score (micro avg) 0.8524
2024-03-26 15:48:48,275 saving best model
2024-03-26 15:48:48,727 ----------------------------------------------------------------------------------------------------
2024-03-26 15:48:50,103 epoch 4 - iter 4/48 - loss 0.21412296 - time (sec): 1.37 - samples/sec: 1824.20 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:48:51,996 epoch 4 - iter 8/48 - loss 0.20087814 - time (sec): 3.27 - samples/sec: 1640.43 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:48:54,504 epoch 4 - iter 12/48 - loss 0.18530637 - time (sec): 5.77 - samples/sec: 1461.50 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:48:56,381 epoch 4 - iter 16/48 - loss 0.19056545 - time (sec): 7.65 - samples/sec: 1479.99 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:48:58,737 epoch 4 - iter 20/48 - loss 0.18109565 - time (sec): 10.01 - samples/sec: 1468.23 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:49:01,604 epoch 4 - iter 24/48 - loss 0.17043274 - time (sec): 12.87 - samples/sec: 1416.31 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:49:02,712 epoch 4 - iter 28/48 - loss 0.17008703 - time (sec): 13.98 - samples/sec: 1452.82 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:49:05,694 epoch 4 - iter 32/48 - loss 0.16578596 - time (sec): 16.96 - samples/sec: 1392.19 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:49:07,403 epoch 4 - iter 36/48 - loss 0.17310898 - time (sec): 18.67 - samples/sec: 1424.82 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:49:10,200 epoch 4 - iter 40/48 - loss 0.17983930 - time (sec): 21.47 - samples/sec: 1391.90 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:49:11,102 epoch 4 - iter 44/48 - loss 0.18378026 - time (sec): 22.37 - samples/sec: 1438.31 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:49:12,572 epoch 4 - iter 48/48 - loss 0.18337316 - time (sec): 23.84 - samples/sec: 1445.82 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:49:12,572 ----------------------------------------------------------------------------------------------------
2024-03-26 15:49:12,572 EPOCH 4 done: loss 0.1834 - lr: 0.000020
2024-03-26 15:49:13,476 DEV : loss 0.20375721156597137 - f1-score (micro avg) 0.8751
2024-03-26 15:49:13,477 saving best model
2024-03-26 15:49:13,891 ----------------------------------------------------------------------------------------------------
2024-03-26 15:49:16,313 epoch 5 - iter 4/48 - loss 0.11807576 - time (sec): 2.42 - samples/sec: 1313.26 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:49:17,731 epoch 5 - iter 8/48 - loss 0.14793918 - time (sec): 3.84 - samples/sec: 1483.23 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:49:19,178 epoch 5 - iter 12/48 - loss 0.14657960 - time (sec): 5.29 - samples/sec: 1559.11 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:49:21,349 epoch 5 - iter 16/48 - loss 0.14409177 - time (sec): 7.46 - samples/sec: 1475.54 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:49:23,405 epoch 5 - iter 20/48 - loss 0.15265255 - time (sec): 9.51 - samples/sec: 1480.21 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:49:25,879 epoch 5 - iter 24/48 - loss 0.14616029 - time (sec): 11.99 - samples/sec: 1468.65 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:49:28,433 epoch 5 - iter 28/48 - loss 0.13912038 - time (sec): 14.54 - samples/sec: 1447.64 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:49:30,299 epoch 5 - iter 32/48 - loss 0.13859993 - time (sec): 16.41 - samples/sec: 1451.45 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:49:32,115 epoch 5 - iter 36/48 - loss 0.13486299 - time (sec): 18.22 - samples/sec: 1451.25 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:49:34,416 epoch 5 - iter 40/48 - loss 0.13391851 - time (sec): 20.52 - samples/sec: 1439.04 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:49:36,365 epoch 5 - iter 44/48 - loss 0.13625635 - time (sec): 22.47 - samples/sec: 1437.33 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:49:37,417 epoch 5 - iter 48/48 - loss 0.13539195 - time (sec): 23.52 - samples/sec: 1465.38 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:49:37,417 ----------------------------------------------------------------------------------------------------
2024-03-26 15:49:37,417 EPOCH 5 done: loss 0.1354 - lr: 0.000017
2024-03-26 15:49:38,319 DEV : loss 0.19656339287757874 - f1-score (micro avg) 0.8769
2024-03-26 15:49:38,319 saving best model
2024-03-26 15:49:38,757 ----------------------------------------------------------------------------------------------------
2024-03-26 15:49:41,340 epoch 6 - iter 4/48 - loss 0.09964959 - time (sec): 2.58 - samples/sec: 1231.29 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:49:43,319 epoch 6 - iter 8/48 - loss 0.10546942 - time (sec): 4.56 - samples/sec: 1287.23 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:49:44,879 epoch 6 - iter 12/48 - loss 0.10479654 - time (sec): 6.12 - samples/sec: 1441.45 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:49:46,811 epoch 6 - iter 16/48 - loss 0.09781057 - time (sec): 8.05 - samples/sec: 1444.08 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:49:47,869 epoch 6 - iter 20/48 - loss 0.10170422 - time (sec): 9.11 - samples/sec: 1533.69 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:49:49,769 epoch 6 - iter 24/48 - loss 0.10095479 - time (sec): 11.01 - samples/sec: 1517.96 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:49:50,901 epoch 6 - iter 28/48 - loss 0.10031886 - time (sec): 12.14 - samples/sec: 1566.60 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:49:52,650 epoch 6 - iter 32/48 - loss 0.09608854 - time (sec): 13.89 - samples/sec: 1585.85 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:49:55,118 epoch 6 - iter 36/48 - loss 0.10539029 - time (sec): 16.36 - samples/sec: 1552.15 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:49:57,149 epoch 6 - iter 40/48 - loss 0.10342541 - time (sec): 18.39 - samples/sec: 1545.02 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:49:59,006 epoch 6 - iter 44/48 - loss 0.10552790 - time (sec): 20.25 - samples/sec: 1553.60 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:50:00,528 epoch 6 - iter 48/48 - loss 0.10513778 - time (sec): 21.77 - samples/sec: 1583.52 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:50:00,528 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:00,528 EPOCH 6 done: loss 0.1051 - lr: 0.000014
2024-03-26 15:50:01,423 DEV : loss 0.17874132096767426 - f1-score (micro avg) 0.8906
2024-03-26 15:50:01,424 saving best model
2024-03-26 15:50:01,864 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:03,950 epoch 7 - iter 4/48 - loss 0.10289225 - time (sec): 2.08 - samples/sec: 1326.42 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:50:05,640 epoch 7 - iter 8/48 - loss 0.09604354 - time (sec): 3.77 - samples/sec: 1522.30 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:50:07,700 epoch 7 - iter 12/48 - loss 0.08236734 - time (sec): 5.83 - samples/sec: 1468.53 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:50:10,260 epoch 7 - iter 16/48 - loss 0.07567250 - time (sec): 8.39 - samples/sec: 1407.95 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:50:12,931 epoch 7 - iter 20/48 - loss 0.07694176 - time (sec): 11.07 - samples/sec: 1412.55 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:50:14,448 epoch 7 - iter 24/48 - loss 0.07791950 - time (sec): 12.58 - samples/sec: 1432.47 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:50:16,533 epoch 7 - iter 28/48 - loss 0.07423173 - time (sec): 14.67 - samples/sec: 1450.44 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:50:18,667 epoch 7 - iter 32/48 - loss 0.07743964 - time (sec): 16.80 - samples/sec: 1455.12 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:50:20,872 epoch 7 - iter 36/48 - loss 0.08204888 - time (sec): 19.01 - samples/sec: 1440.31 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:50:22,443 epoch 7 - iter 40/48 - loss 0.07843893 - time (sec): 20.58 - samples/sec: 1448.97 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:50:24,087 epoch 7 - iter 44/48 - loss 0.08223725 - time (sec): 22.22 - samples/sec: 1467.91 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:50:25,403 epoch 7 - iter 48/48 - loss 0.08252587 - time (sec): 23.54 - samples/sec: 1464.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:50:25,403 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:25,403 EPOCH 7 done: loss 0.0825 - lr: 0.000010
2024-03-26 15:50:26,297 DEV : loss 0.17732246220111847 - f1-score (micro avg) 0.9049
2024-03-26 15:50:26,298 saving best model
2024-03-26 15:50:26,725 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:29,038 epoch 8 - iter 4/48 - loss 0.06075169 - time (sec): 2.31 - samples/sec: 1271.50 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:50:31,556 epoch 8 - iter 8/48 - loss 0.05551287 - time (sec): 4.83 - samples/sec: 1369.60 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:50:33,525 epoch 8 - iter 12/48 - loss 0.05367756 - time (sec): 6.80 - samples/sec: 1353.52 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:50:35,496 epoch 8 - iter 16/48 - loss 0.05290307 - time (sec): 8.77 - samples/sec: 1367.30 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:50:37,000 epoch 8 - iter 20/48 - loss 0.05432871 - time (sec): 10.27 - samples/sec: 1391.60 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:50:39,319 epoch 8 - iter 24/48 - loss 0.05341962 - time (sec): 12.59 - samples/sec: 1377.15 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:50:41,440 epoch 8 - iter 28/48 - loss 0.05337120 - time (sec): 14.71 - samples/sec: 1369.90 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:50:43,722 epoch 8 - iter 32/48 - loss 0.06255002 - time (sec): 17.00 - samples/sec: 1381.28 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:50:46,862 epoch 8 - iter 36/48 - loss 0.06460117 - time (sec): 20.14 - samples/sec: 1332.82 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:50:48,818 epoch 8 - iter 40/48 - loss 0.06712721 - time (sec): 22.09 - samples/sec: 1339.68 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:50:49,609 epoch 8 - iter 44/48 - loss 0.06594343 - time (sec): 22.88 - samples/sec: 1388.37 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:50:51,407 epoch 8 - iter 48/48 - loss 0.06743138 - time (sec): 24.68 - samples/sec: 1396.74 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:50:51,407 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:51,407 EPOCH 8 done: loss 0.0674 - lr: 0.000007
2024-03-26 15:50:52,311 DEV : loss 0.17159819602966309 - f1-score (micro avg) 0.9157
2024-03-26 15:50:52,312 saving best model
2024-03-26 15:50:52,740 ----------------------------------------------------------------------------------------------------
2024-03-26 15:50:55,418 epoch 9 - iter 4/48 - loss 0.03996473 - time (sec): 2.68 - samples/sec: 1232.16 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:50:57,081 epoch 9 - iter 8/48 - loss 0.04324845 - time (sec): 4.34 - samples/sec: 1322.13 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:50:59,184 epoch 9 - iter 12/48 - loss 0.05334992 - time (sec): 6.44 - samples/sec: 1393.21 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:51:01,255 epoch 9 - iter 16/48 - loss 0.05554006 - time (sec): 8.51 - samples/sec: 1422.38 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:51:03,568 epoch 9 - iter 20/48 - loss 0.04996482 - time (sec): 10.83 - samples/sec: 1397.40 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:51:05,474 epoch 9 - iter 24/48 - loss 0.05118172 - time (sec): 12.73 - samples/sec: 1390.82 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:51:08,665 epoch 9 - iter 28/48 - loss 0.05247513 - time (sec): 15.92 - samples/sec: 1341.59 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:51:10,022 epoch 9 - iter 32/48 - loss 0.05419220 - time (sec): 17.28 - samples/sec: 1382.48 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:51:12,370 epoch 9 - iter 36/48 - loss 0.05323258 - time (sec): 19.63 - samples/sec: 1372.98 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:51:13,823 epoch 9 - iter 40/48 - loss 0.05598120 - time (sec): 21.08 - samples/sec: 1390.82 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:51:15,323 epoch 9 - iter 44/48 - loss 0.06011503 - time (sec): 22.58 - samples/sec: 1408.71 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:51:16,718 epoch 9 - iter 48/48 - loss 0.05993914 - time (sec): 23.98 - samples/sec: 1437.74 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:51:16,718 ----------------------------------------------------------------------------------------------------
2024-03-26 15:51:16,718 EPOCH 9 done: loss 0.0599 - lr: 0.000004
2024-03-26 15:51:17,641 DEV : loss 0.17445135116577148 - f1-score (micro avg) 0.9153
2024-03-26 15:51:17,642 ----------------------------------------------------------------------------------------------------
2024-03-26 15:51:20,004 epoch 10 - iter 4/48 - loss 0.03793612 - time (sec): 2.36 - samples/sec: 1393.76 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:51:21,979 epoch 10 - iter 8/48 - loss 0.03970409 - time (sec): 4.34 - samples/sec: 1347.83 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:51:23,153 epoch 10 - iter 12/48 - loss 0.05682156 - time (sec): 5.51 - samples/sec: 1513.67 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:51:24,664 epoch 10 - iter 16/48 - loss 0.06071482 - time (sec): 7.02 - samples/sec: 1597.92 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:51:26,354 epoch 10 - iter 20/48 - loss 0.06010429 - time (sec): 8.71 - samples/sec: 1638.72 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:51:28,361 epoch 10 - iter 24/48 - loss 0.05659568 - time (sec): 10.72 - samples/sec: 1590.02 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:51:30,466 epoch 10 - iter 28/48 - loss 0.05309482 - time (sec): 12.82 - samples/sec: 1555.51 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:51:32,568 epoch 10 - iter 32/48 - loss 0.05297842 - time (sec): 14.93 - samples/sec: 1563.19 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:51:33,959 epoch 10 - iter 36/48 - loss 0.05326019 - time (sec): 16.32 - samples/sec: 1562.80 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:51:36,578 epoch 10 - iter 40/48 - loss 0.05017067 - time (sec): 18.94 - samples/sec: 1524.02 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:51:39,089 epoch 10 - iter 44/48 - loss 0.05227028 - time (sec): 21.45 - samples/sec: 1499.29 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:51:40,674 epoch 10 - iter 48/48 - loss 0.05245429 - time (sec): 23.03 - samples/sec: 1496.71 - lr: 0.000000 - momentum: 0.000000
2024-03-26 15:51:40,674 ----------------------------------------------------------------------------------------------------
2024-03-26 15:51:40,674 EPOCH 10 done: loss 0.0525 - lr: 0.000000
2024-03-26 15:51:41,572 DEV : loss 0.17229919135570526 - f1-score (micro avg) 0.9175
2024-03-26 15:51:41,573 saving best model
2024-03-26 15:51:42,279 ----------------------------------------------------------------------------------------------------
2024-03-26 15:51:42,280 Loading model from best epoch ...
2024-03-26 15:51:42,995 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:51:43,741
Results:
- F-score (micro) 0.9033
- F-score (macro) 0.6868
- Accuracy 0.8259
By class:
precision recall f1-score support
Unternehmen 0.8864 0.8797 0.8830 266
Auslagerung 0.8697 0.9116 0.8902 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8931 0.9137 0.9033 649
macro avg 0.6799 0.6941 0.6868 649
weighted avg 0.8959 0.9137 0.9046 649
2024-03-26 15:51:43,741 ----------------------------------------------------------------------------------------------------
|