stefan-it's picture
Upload ./training.log with huggingface_hub
e582aa4 verified
2024-03-26 11:08:21,762 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,762 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Train: 758 sentences
2024-03-26 11:08:21,763 (train_with_dev=False, train_with_test=False)
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Training Params:
2024-03-26 11:08:21,763 - learning_rate: "5e-05"
2024-03-26 11:08:21,763 - mini_batch_size: "8"
2024-03-26 11:08:21,763 - max_epochs: "10"
2024-03-26 11:08:21,763 - shuffle: "True"
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Plugins:
2024-03-26 11:08:21,763 - TensorboardLogger
2024-03-26 11:08:21,763 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:08:21,763 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Computation:
2024-03-26 11:08:21,763 - compute on device: cuda:0
2024-03-26 11:08:21,763 - embedding storage: none
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr5e-05-1"
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:21,763 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:08:23,411 epoch 1 - iter 9/95 - loss 3.39183266 - time (sec): 1.65 - samples/sec: 1868.90 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:08:24,991 epoch 1 - iter 18/95 - loss 3.17654028 - time (sec): 3.23 - samples/sec: 1936.66 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:08:27,506 epoch 1 - iter 27/95 - loss 2.89741196 - time (sec): 5.74 - samples/sec: 1783.20 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:08:29,798 epoch 1 - iter 36/95 - loss 2.63684990 - time (sec): 8.03 - samples/sec: 1739.97 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:08:31,776 epoch 1 - iter 45/95 - loss 2.43099939 - time (sec): 10.01 - samples/sec: 1744.14 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:08:33,049 epoch 1 - iter 54/95 - loss 2.27969388 - time (sec): 11.29 - samples/sec: 1784.54 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:08:34,823 epoch 1 - iter 63/95 - loss 2.12336427 - time (sec): 13.06 - samples/sec: 1781.41 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:08:36,187 epoch 1 - iter 72/95 - loss 1.99792100 - time (sec): 14.42 - samples/sec: 1806.03 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:08:38,261 epoch 1 - iter 81/95 - loss 1.84728397 - time (sec): 16.50 - samples/sec: 1795.33 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:08:39,631 epoch 1 - iter 90/95 - loss 1.74305657 - time (sec): 17.87 - samples/sec: 1815.53 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:08:40,922 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:40,922 EPOCH 1 done: loss 1.6644 - lr: 0.000047
2024-03-26 11:08:41,790 DEV : loss 0.42400190234184265 - f1-score (micro avg) 0.6944
2024-03-26 11:08:41,791 saving best model
2024-03-26 11:08:42,079 ----------------------------------------------------------------------------------------------------
2024-03-26 11:08:44,282 epoch 2 - iter 9/95 - loss 0.38737862 - time (sec): 2.20 - samples/sec: 1677.01 - lr: 0.000050 - momentum: 0.000000
2024-03-26 11:08:46,057 epoch 2 - iter 18/95 - loss 0.42372755 - time (sec): 3.98 - samples/sec: 1824.46 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:08:47,935 epoch 2 - iter 27/95 - loss 0.40373047 - time (sec): 5.86 - samples/sec: 1760.63 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:08:49,750 epoch 2 - iter 36/95 - loss 0.37995884 - time (sec): 7.67 - samples/sec: 1743.35 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:08:51,700 epoch 2 - iter 45/95 - loss 0.35544085 - time (sec): 9.62 - samples/sec: 1760.43 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:08:53,971 epoch 2 - iter 54/95 - loss 0.32784977 - time (sec): 11.89 - samples/sec: 1736.30 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:08:55,341 epoch 2 - iter 63/95 - loss 0.33315303 - time (sec): 13.26 - samples/sec: 1776.34 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:08:56,724 epoch 2 - iter 72/95 - loss 0.32465532 - time (sec): 14.64 - samples/sec: 1806.46 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:08:58,560 epoch 2 - iter 81/95 - loss 0.31690141 - time (sec): 16.48 - samples/sec: 1796.14 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:09:00,242 epoch 2 - iter 90/95 - loss 0.31275220 - time (sec): 18.16 - samples/sec: 1796.89 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:09:01,174 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:01,174 EPOCH 2 done: loss 0.3089 - lr: 0.000045
2024-03-26 11:09:02,115 DEV : loss 0.2924253046512604 - f1-score (micro avg) 0.8294
2024-03-26 11:09:02,117 saving best model
2024-03-26 11:09:02,583 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:04,607 epoch 3 - iter 9/95 - loss 0.27193024 - time (sec): 2.02 - samples/sec: 1659.21 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:09:06,619 epoch 3 - iter 18/95 - loss 0.23216075 - time (sec): 4.03 - samples/sec: 1668.18 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:09:08,007 epoch 3 - iter 27/95 - loss 0.21629269 - time (sec): 5.42 - samples/sec: 1764.26 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:09:10,521 epoch 3 - iter 36/95 - loss 0.20920144 - time (sec): 7.94 - samples/sec: 1703.67 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:09:12,802 epoch 3 - iter 45/95 - loss 0.19430274 - time (sec): 10.22 - samples/sec: 1737.61 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:09:14,009 epoch 3 - iter 54/95 - loss 0.18883045 - time (sec): 11.42 - samples/sec: 1793.55 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:09:16,050 epoch 3 - iter 63/95 - loss 0.17703435 - time (sec): 13.47 - samples/sec: 1769.02 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:09:17,690 epoch 3 - iter 72/95 - loss 0.16863551 - time (sec): 15.10 - samples/sec: 1778.10 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:09:19,511 epoch 3 - iter 81/95 - loss 0.17069625 - time (sec): 16.93 - samples/sec: 1767.29 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:09:21,771 epoch 3 - iter 90/95 - loss 0.16374446 - time (sec): 19.19 - samples/sec: 1736.18 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:09:22,261 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:22,261 EPOCH 3 done: loss 0.1647 - lr: 0.000039
2024-03-26 11:09:23,216 DEV : loss 0.24790360033512115 - f1-score (micro avg) 0.8685
2024-03-26 11:09:23,217 saving best model
2024-03-26 11:09:23,699 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:25,328 epoch 4 - iter 9/95 - loss 0.13145670 - time (sec): 1.63 - samples/sec: 1978.66 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:09:27,422 epoch 4 - iter 18/95 - loss 0.11936859 - time (sec): 3.72 - samples/sec: 1732.78 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:09:29,243 epoch 4 - iter 27/95 - loss 0.12783695 - time (sec): 5.54 - samples/sec: 1757.58 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:09:31,850 epoch 4 - iter 36/95 - loss 0.10550090 - time (sec): 8.15 - samples/sec: 1690.57 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:09:33,570 epoch 4 - iter 45/95 - loss 0.11156077 - time (sec): 9.87 - samples/sec: 1710.58 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:09:35,164 epoch 4 - iter 54/95 - loss 0.11735065 - time (sec): 11.46 - samples/sec: 1759.37 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:09:37,147 epoch 4 - iter 63/95 - loss 0.11856926 - time (sec): 13.45 - samples/sec: 1770.39 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:09:38,460 epoch 4 - iter 72/95 - loss 0.11769596 - time (sec): 14.76 - samples/sec: 1800.16 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:09:40,244 epoch 4 - iter 81/95 - loss 0.11529168 - time (sec): 16.54 - samples/sec: 1788.76 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:09:41,804 epoch 4 - iter 90/95 - loss 0.11252805 - time (sec): 18.10 - samples/sec: 1807.02 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:09:42,749 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:42,749 EPOCH 4 done: loss 0.1122 - lr: 0.000034
2024-03-26 11:09:43,783 DEV : loss 0.23124928772449493 - f1-score (micro avg) 0.8929
2024-03-26 11:09:43,784 saving best model
2024-03-26 11:09:44,262 ----------------------------------------------------------------------------------------------------
2024-03-26 11:09:45,949 epoch 5 - iter 9/95 - loss 0.08974360 - time (sec): 1.69 - samples/sec: 1877.38 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:09:48,225 epoch 5 - iter 18/95 - loss 0.09542597 - time (sec): 3.96 - samples/sec: 1691.57 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:09:49,848 epoch 5 - iter 27/95 - loss 0.08770892 - time (sec): 5.59 - samples/sec: 1736.78 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:09:51,589 epoch 5 - iter 36/95 - loss 0.08472340 - time (sec): 7.33 - samples/sec: 1721.93 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:09:53,361 epoch 5 - iter 45/95 - loss 0.09940044 - time (sec): 9.10 - samples/sec: 1763.27 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:09:55,038 epoch 5 - iter 54/95 - loss 0.10342254 - time (sec): 10.77 - samples/sec: 1805.05 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:09:56,931 epoch 5 - iter 63/95 - loss 0.09734399 - time (sec): 12.67 - samples/sec: 1788.49 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:09:59,168 epoch 5 - iter 72/95 - loss 0.08767242 - time (sec): 14.91 - samples/sec: 1820.62 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:10:00,467 epoch 5 - iter 81/95 - loss 0.08717347 - time (sec): 16.20 - samples/sec: 1837.73 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:10:02,677 epoch 5 - iter 90/95 - loss 0.08332544 - time (sec): 18.41 - samples/sec: 1798.30 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:10:03,321 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:03,321 EPOCH 5 done: loss 0.0838 - lr: 0.000028
2024-03-26 11:10:04,289 DEV : loss 0.22174565494060516 - f1-score (micro avg) 0.9143
2024-03-26 11:10:04,290 saving best model
2024-03-26 11:10:04,783 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:06,386 epoch 6 - iter 9/95 - loss 0.02955144 - time (sec): 1.60 - samples/sec: 1803.68 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:10:08,469 epoch 6 - iter 18/95 - loss 0.05567457 - time (sec): 3.69 - samples/sec: 1779.90 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:10:10,201 epoch 6 - iter 27/95 - loss 0.05951230 - time (sec): 5.42 - samples/sec: 1814.33 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:10:11,901 epoch 6 - iter 36/95 - loss 0.05959520 - time (sec): 7.12 - samples/sec: 1780.39 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:10:13,521 epoch 6 - iter 45/95 - loss 0.06840248 - time (sec): 8.74 - samples/sec: 1799.66 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:10:15,611 epoch 6 - iter 54/95 - loss 0.06861246 - time (sec): 10.83 - samples/sec: 1775.60 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:10:17,257 epoch 6 - iter 63/95 - loss 0.06935697 - time (sec): 12.47 - samples/sec: 1772.26 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:10:20,161 epoch 6 - iter 72/95 - loss 0.06391025 - time (sec): 15.38 - samples/sec: 1734.12 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:10:22,121 epoch 6 - iter 81/95 - loss 0.06207131 - time (sec): 17.34 - samples/sec: 1736.90 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:10:23,856 epoch 6 - iter 90/95 - loss 0.06175948 - time (sec): 19.07 - samples/sec: 1730.88 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:10:24,466 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:24,466 EPOCH 6 done: loss 0.0608 - lr: 0.000023
2024-03-26 11:10:25,421 DEV : loss 0.21966709196567535 - f1-score (micro avg) 0.9118
2024-03-26 11:10:25,422 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:26,783 epoch 7 - iter 9/95 - loss 0.06461415 - time (sec): 1.36 - samples/sec: 2172.97 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:10:28,422 epoch 7 - iter 18/95 - loss 0.05971675 - time (sec): 3.00 - samples/sec: 1957.99 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:10:30,235 epoch 7 - iter 27/95 - loss 0.06004325 - time (sec): 4.81 - samples/sec: 1899.48 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:10:32,162 epoch 7 - iter 36/95 - loss 0.05314726 - time (sec): 6.74 - samples/sec: 1856.34 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:10:34,574 epoch 7 - iter 45/95 - loss 0.05080729 - time (sec): 9.15 - samples/sec: 1790.78 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:10:35,577 epoch 7 - iter 54/95 - loss 0.04997814 - time (sec): 10.15 - samples/sec: 1865.64 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:10:37,466 epoch 7 - iter 63/95 - loss 0.04724952 - time (sec): 12.04 - samples/sec: 1867.82 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:10:39,426 epoch 7 - iter 72/95 - loss 0.04535015 - time (sec): 14.00 - samples/sec: 1829.09 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:10:41,457 epoch 7 - iter 81/95 - loss 0.04623420 - time (sec): 16.03 - samples/sec: 1820.89 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:10:43,465 epoch 7 - iter 90/95 - loss 0.04648151 - time (sec): 18.04 - samples/sec: 1822.31 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:10:44,329 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:44,329 EPOCH 7 done: loss 0.0457 - lr: 0.000017
2024-03-26 11:10:45,284 DEV : loss 0.19319681823253632 - f1-score (micro avg) 0.9232
2024-03-26 11:10:45,286 saving best model
2024-03-26 11:10:45,770 ----------------------------------------------------------------------------------------------------
2024-03-26 11:10:47,432 epoch 8 - iter 9/95 - loss 0.02840275 - time (sec): 1.66 - samples/sec: 1799.98 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:10:49,486 epoch 8 - iter 18/95 - loss 0.02912869 - time (sec): 3.72 - samples/sec: 1636.62 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:10:51,083 epoch 8 - iter 27/95 - loss 0.02837540 - time (sec): 5.31 - samples/sec: 1732.91 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:10:52,851 epoch 8 - iter 36/95 - loss 0.03120678 - time (sec): 7.08 - samples/sec: 1778.30 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:10:55,272 epoch 8 - iter 45/95 - loss 0.02729828 - time (sec): 9.50 - samples/sec: 1749.70 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:10:57,672 epoch 8 - iter 54/95 - loss 0.03232762 - time (sec): 11.90 - samples/sec: 1749.78 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:10:59,655 epoch 8 - iter 63/95 - loss 0.03291277 - time (sec): 13.88 - samples/sec: 1758.50 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:11:00,752 epoch 8 - iter 72/95 - loss 0.03264611 - time (sec): 14.98 - samples/sec: 1792.38 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:11:02,462 epoch 8 - iter 81/95 - loss 0.03256358 - time (sec): 16.69 - samples/sec: 1778.20 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:11:03,888 epoch 8 - iter 90/95 - loss 0.03270593 - time (sec): 18.12 - samples/sec: 1791.63 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:11:05,149 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:05,149 EPOCH 8 done: loss 0.0342 - lr: 0.000012
2024-03-26 11:11:06,105 DEV : loss 0.21725119650363922 - f1-score (micro avg) 0.9285
2024-03-26 11:11:06,106 saving best model
2024-03-26 11:11:06,583 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:08,416 epoch 9 - iter 9/95 - loss 0.01917477 - time (sec): 1.83 - samples/sec: 1895.30 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:11:10,459 epoch 9 - iter 18/95 - loss 0.01353751 - time (sec): 3.88 - samples/sec: 1743.54 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:11:12,350 epoch 9 - iter 27/95 - loss 0.01386675 - time (sec): 5.77 - samples/sec: 1703.87 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:11:14,294 epoch 9 - iter 36/95 - loss 0.02163211 - time (sec): 7.71 - samples/sec: 1746.03 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:11:16,225 epoch 9 - iter 45/95 - loss 0.02236524 - time (sec): 9.64 - samples/sec: 1729.33 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:11:18,110 epoch 9 - iter 54/95 - loss 0.02296002 - time (sec): 11.53 - samples/sec: 1764.80 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:11:20,041 epoch 9 - iter 63/95 - loss 0.02435314 - time (sec): 13.46 - samples/sec: 1764.55 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:11:21,707 epoch 9 - iter 72/95 - loss 0.02761300 - time (sec): 15.12 - samples/sec: 1770.25 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:11:23,465 epoch 9 - iter 81/95 - loss 0.02828915 - time (sec): 16.88 - samples/sec: 1761.41 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:11:25,270 epoch 9 - iter 90/95 - loss 0.02665807 - time (sec): 18.69 - samples/sec: 1778.92 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:11:25,788 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:25,788 EPOCH 9 done: loss 0.0283 - lr: 0.000006
2024-03-26 11:11:26,755 DEV : loss 0.22617875039577484 - f1-score (micro avg) 0.9332
2024-03-26 11:11:26,756 saving best model
2024-03-26 11:11:27,237 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:28,752 epoch 10 - iter 9/95 - loss 0.01044236 - time (sec): 1.51 - samples/sec: 1834.26 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:11:30,640 epoch 10 - iter 18/95 - loss 0.01347928 - time (sec): 3.40 - samples/sec: 1777.08 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:11:32,812 epoch 10 - iter 27/95 - loss 0.02026926 - time (sec): 5.57 - samples/sec: 1734.57 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:11:34,757 epoch 10 - iter 36/95 - loss 0.02504874 - time (sec): 7.52 - samples/sec: 1744.52 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:11:35,961 epoch 10 - iter 45/95 - loss 0.02354637 - time (sec): 8.72 - samples/sec: 1796.91 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:11:37,938 epoch 10 - iter 54/95 - loss 0.02573327 - time (sec): 10.70 - samples/sec: 1779.53 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:11:39,373 epoch 10 - iter 63/95 - loss 0.02906790 - time (sec): 12.13 - samples/sec: 1790.70 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:11:41,670 epoch 10 - iter 72/95 - loss 0.02563533 - time (sec): 14.43 - samples/sec: 1774.89 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:11:44,044 epoch 10 - iter 81/95 - loss 0.02653331 - time (sec): 16.81 - samples/sec: 1756.99 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:11:45,898 epoch 10 - iter 90/95 - loss 0.02469707 - time (sec): 18.66 - samples/sec: 1754.34 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:11:46,944 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:46,944 EPOCH 10 done: loss 0.0236 - lr: 0.000001
2024-03-26 11:11:47,914 DEV : loss 0.22828947007656097 - f1-score (micro avg) 0.9346
2024-03-26 11:11:47,915 saving best model
2024-03-26 11:11:48,710 ----------------------------------------------------------------------------------------------------
2024-03-26 11:11:48,711 Loading model from best epoch ...
2024-03-26 11:11:49,658 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:11:50,433
Results:
- F-score (micro) 0.9141
- F-score (macro) 0.6954
- Accuracy 0.8442
By class:
precision recall f1-score support
Unternehmen 0.9008 0.8872 0.8939 266
Auslagerung 0.8867 0.9116 0.8990 249
Ort 0.9852 0.9925 0.9888 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9099 0.9183 0.9141 649
macro avg 0.6932 0.6979 0.6954 649
weighted avg 0.9128 0.9183 0.9155 649
2024-03-26 11:11:50,434 ----------------------------------------------------------------------------------------------------