File size: 26,622 Bytes
5f1b20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2024-03-26 12:07:35,602 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(30001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Train:  758 sentences
2024-03-26 12:07:35,603         (train_with_dev=False, train_with_test=False)
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Training Params:
2024-03-26 12:07:35,603  - learning_rate: "5e-05" 
2024-03-26 12:07:35,603  - mini_batch_size: "16"
2024-03-26 12:07:35,603  - max_epochs: "10"
2024-03-26 12:07:35,603  - shuffle: "True"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Plugins:
2024-03-26 12:07:35,603  - TensorboardLogger
2024-03-26 12:07:35,603  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 12:07:35,603  - metric: "('micro avg', 'f1-score')"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Computation:
2024-03-26 12:07:35,603  - compute on device: cuda:0
2024-03-26 12:07:35,603  - embedding storage: none
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-5"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 12:07:37,116 epoch 1 - iter 4/48 - loss 3.11778714 - time (sec): 1.51 - samples/sec: 1733.05 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:07:40,030 epoch 1 - iter 8/48 - loss 3.06180791 - time (sec): 4.43 - samples/sec: 1374.97 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:07:41,942 epoch 1 - iter 12/48 - loss 3.01711290 - time (sec): 6.34 - samples/sec: 1405.22 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:07:43,616 epoch 1 - iter 16/48 - loss 2.87606922 - time (sec): 8.01 - samples/sec: 1501.64 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:07:45,827 epoch 1 - iter 20/48 - loss 2.72415315 - time (sec): 10.22 - samples/sec: 1474.93 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:07:48,596 epoch 1 - iter 24/48 - loss 2.55773822 - time (sec): 12.99 - samples/sec: 1420.04 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:07:50,292 epoch 1 - iter 28/48 - loss 2.44445691 - time (sec): 14.69 - samples/sec: 1428.78 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:07:52,479 epoch 1 - iter 32/48 - loss 2.31125320 - time (sec): 16.88 - samples/sec: 1424.49 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:07:54,080 epoch 1 - iter 36/48 - loss 2.21174392 - time (sec): 18.48 - samples/sec: 1445.00 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:07:56,933 epoch 1 - iter 40/48 - loss 2.08390632 - time (sec): 21.33 - samples/sec: 1402.01 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:07:58,146 epoch 1 - iter 44/48 - loss 1.99032800 - time (sec): 22.54 - samples/sec: 1425.92 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:00,046 epoch 1 - iter 48/48 - loss 1.90868499 - time (sec): 24.44 - samples/sec: 1410.32 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:00,047 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:00,047 EPOCH 1 done: loss 1.9087 - lr: 0.000049
2024-03-26 12:08:00,907 DEV : loss 0.543185293674469 - f1-score (micro avg)  0.5736
2024-03-26 12:08:00,908 saving best model
2024-03-26 12:08:01,166 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:03,961 epoch 2 - iter 4/48 - loss 0.63153066 - time (sec): 2.79 - samples/sec: 1235.52 - lr: 0.000050 - momentum: 0.000000
2024-03-26 12:08:05,900 epoch 2 - iter 8/48 - loss 0.57681578 - time (sec): 4.73 - samples/sec: 1294.70 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:07,882 epoch 2 - iter 12/48 - loss 0.55300388 - time (sec): 6.72 - samples/sec: 1328.57 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:10,632 epoch 2 - iter 16/48 - loss 0.50764240 - time (sec): 9.46 - samples/sec: 1337.04 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:08:12,057 epoch 2 - iter 20/48 - loss 0.48930833 - time (sec): 10.89 - samples/sec: 1375.75 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:08:14,974 epoch 2 - iter 24/48 - loss 0.45960951 - time (sec): 13.81 - samples/sec: 1296.23 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:08:16,643 epoch 2 - iter 28/48 - loss 0.45452998 - time (sec): 15.48 - samples/sec: 1328.57 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:08:18,696 epoch 2 - iter 32/48 - loss 0.43339098 - time (sec): 17.53 - samples/sec: 1324.50 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:20,523 epoch 2 - iter 36/48 - loss 0.42883053 - time (sec): 19.36 - samples/sec: 1354.11 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:22,919 epoch 2 - iter 40/48 - loss 0.42732543 - time (sec): 21.75 - samples/sec: 1345.70 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:25,174 epoch 2 - iter 44/48 - loss 0.41218116 - time (sec): 24.01 - samples/sec: 1351.01 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:26,460 epoch 2 - iter 48/48 - loss 0.40616007 - time (sec): 25.29 - samples/sec: 1362.89 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:26,460 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:26,460 EPOCH 2 done: loss 0.4062 - lr: 0.000045
2024-03-26 12:08:27,390 DEV : loss 0.27681225538253784 - f1-score (micro avg)  0.8318
2024-03-26 12:08:27,391 saving best model
2024-03-26 12:08:27,828 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:28,926 epoch 3 - iter 4/48 - loss 0.32628564 - time (sec): 1.10 - samples/sec: 2035.62 - lr: 0.000044 - momentum: 0.000000
2024-03-26 12:08:30,864 epoch 3 - iter 8/48 - loss 0.33108745 - time (sec): 3.03 - samples/sec: 1623.66 - lr: 0.000044 - momentum: 0.000000
2024-03-26 12:08:33,122 epoch 3 - iter 12/48 - loss 0.27482260 - time (sec): 5.29 - samples/sec: 1620.20 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:08:35,099 epoch 3 - iter 16/48 - loss 0.26946915 - time (sec): 7.27 - samples/sec: 1564.76 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:08:37,028 epoch 3 - iter 20/48 - loss 0.26156635 - time (sec): 9.20 - samples/sec: 1541.20 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:08:39,027 epoch 3 - iter 24/48 - loss 0.24592552 - time (sec): 11.20 - samples/sec: 1497.12 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:08:42,330 epoch 3 - iter 28/48 - loss 0.23213405 - time (sec): 14.50 - samples/sec: 1380.43 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:08:43,890 epoch 3 - iter 32/48 - loss 0.23144593 - time (sec): 16.06 - samples/sec: 1402.51 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:08:47,297 epoch 3 - iter 36/48 - loss 0.22295835 - time (sec): 19.47 - samples/sec: 1332.44 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:49,782 epoch 3 - iter 40/48 - loss 0.22193128 - time (sec): 21.95 - samples/sec: 1332.98 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:51,917 epoch 3 - iter 44/48 - loss 0.21408438 - time (sec): 24.09 - samples/sec: 1332.17 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:53,552 epoch 3 - iter 48/48 - loss 0.21266740 - time (sec): 25.72 - samples/sec: 1340.16 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:08:53,552 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:53,553 EPOCH 3 done: loss 0.2127 - lr: 0.000039
2024-03-26 12:08:54,484 DEV : loss 0.21906423568725586 - f1-score (micro avg)  0.8593
2024-03-26 12:08:54,484 saving best model
2024-03-26 12:08:54,900 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:57,975 epoch 4 - iter 4/48 - loss 0.11740549 - time (sec): 3.07 - samples/sec: 1213.56 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:08:59,460 epoch 4 - iter 8/48 - loss 0.14421906 - time (sec): 4.56 - samples/sec: 1364.34 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:09:02,077 epoch 4 - iter 12/48 - loss 0.12918348 - time (sec): 7.17 - samples/sec: 1296.27 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:09:04,779 epoch 4 - iter 16/48 - loss 0.11996799 - time (sec): 9.88 - samples/sec: 1285.46 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:09:07,047 epoch 4 - iter 20/48 - loss 0.11541074 - time (sec): 12.14 - samples/sec: 1299.45 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:09:08,575 epoch 4 - iter 24/48 - loss 0.11274160 - time (sec): 13.67 - samples/sec: 1333.36 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:09:11,000 epoch 4 - iter 28/48 - loss 0.11571890 - time (sec): 16.10 - samples/sec: 1319.57 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:09:14,037 epoch 4 - iter 32/48 - loss 0.11758783 - time (sec): 19.13 - samples/sec: 1309.67 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:09:15,742 epoch 4 - iter 36/48 - loss 0.12156915 - time (sec): 20.84 - samples/sec: 1331.89 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:09:16,734 epoch 4 - iter 40/48 - loss 0.12483162 - time (sec): 21.83 - samples/sec: 1375.49 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:18,269 epoch 4 - iter 44/48 - loss 0.12429368 - time (sec): 23.37 - samples/sec: 1392.27 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:19,156 epoch 4 - iter 48/48 - loss 0.12572472 - time (sec): 24.25 - samples/sec: 1421.29 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:19,156 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:19,156 EPOCH 4 done: loss 0.1257 - lr: 0.000034
2024-03-26 12:09:20,185 DEV : loss 0.20740923285484314 - f1-score (micro avg)  0.8866
2024-03-26 12:09:20,186 saving best model
2024-03-26 12:09:20,621 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:22,459 epoch 5 - iter 4/48 - loss 0.12090102 - time (sec): 1.84 - samples/sec: 1564.49 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:09:24,361 epoch 5 - iter 8/48 - loss 0.08690955 - time (sec): 3.74 - samples/sec: 1659.97 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:09:27,482 epoch 5 - iter 12/48 - loss 0.08537459 - time (sec): 6.86 - samples/sec: 1402.63 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:09:28,855 epoch 5 - iter 16/48 - loss 0.08004747 - time (sec): 8.23 - samples/sec: 1444.41 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:09:31,229 epoch 5 - iter 20/48 - loss 0.09057165 - time (sec): 10.61 - samples/sec: 1420.83 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:09:33,382 epoch 5 - iter 24/48 - loss 0.09118019 - time (sec): 12.76 - samples/sec: 1393.20 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:09:34,792 epoch 5 - iter 28/48 - loss 0.09617832 - time (sec): 14.17 - samples/sec: 1432.13 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:09:36,185 epoch 5 - iter 32/48 - loss 0.09826878 - time (sec): 15.56 - samples/sec: 1464.92 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:09:38,457 epoch 5 - iter 36/48 - loss 0.09846321 - time (sec): 17.83 - samples/sec: 1448.02 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:40,324 epoch 5 - iter 40/48 - loss 0.09674286 - time (sec): 19.70 - samples/sec: 1447.10 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:42,409 epoch 5 - iter 44/48 - loss 0.09638321 - time (sec): 21.79 - samples/sec: 1457.16 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:44,567 epoch 5 - iter 48/48 - loss 0.09397791 - time (sec): 23.94 - samples/sec: 1439.72 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:09:44,567 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:44,567 EPOCH 5 done: loss 0.0940 - lr: 0.000028
2024-03-26 12:09:45,505 DEV : loss 0.20168490707874298 - f1-score (micro avg)  0.9022
2024-03-26 12:09:45,506 saving best model
2024-03-26 12:09:45,935 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:47,883 epoch 6 - iter 4/48 - loss 0.07053445 - time (sec): 1.95 - samples/sec: 1410.89 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:09:50,791 epoch 6 - iter 8/48 - loss 0.08016896 - time (sec): 4.85 - samples/sec: 1309.39 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:09:52,691 epoch 6 - iter 12/48 - loss 0.08291448 - time (sec): 6.75 - samples/sec: 1336.93 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:09:54,289 epoch 6 - iter 16/48 - loss 0.08691650 - time (sec): 8.35 - samples/sec: 1385.28 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:09:57,045 epoch 6 - iter 20/48 - loss 0.08104279 - time (sec): 11.11 - samples/sec: 1312.62 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:09:59,801 epoch 6 - iter 24/48 - loss 0.07372277 - time (sec): 13.86 - samples/sec: 1288.63 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:10:02,342 epoch 6 - iter 28/48 - loss 0.07189241 - time (sec): 16.40 - samples/sec: 1264.89 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:10:03,750 epoch 6 - iter 32/48 - loss 0.07946674 - time (sec): 17.81 - samples/sec: 1308.82 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:10:05,666 epoch 6 - iter 36/48 - loss 0.07790067 - time (sec): 19.73 - samples/sec: 1320.00 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:10:06,692 epoch 6 - iter 40/48 - loss 0.07657290 - time (sec): 20.75 - samples/sec: 1359.22 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:09,222 epoch 6 - iter 44/48 - loss 0.07393162 - time (sec): 23.28 - samples/sec: 1336.25 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:12,106 epoch 6 - iter 48/48 - loss 0.06893913 - time (sec): 26.17 - samples/sec: 1317.26 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:12,107 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:12,107 EPOCH 6 done: loss 0.0689 - lr: 0.000023
2024-03-26 12:10:13,053 DEV : loss 0.19028829038143158 - f1-score (micro avg)  0.9094
2024-03-26 12:10:13,054 saving best model
2024-03-26 12:10:13,523 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:15,702 epoch 7 - iter 4/48 - loss 0.03780100 - time (sec): 2.18 - samples/sec: 1335.71 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:10:17,432 epoch 7 - iter 8/48 - loss 0.03164946 - time (sec): 3.91 - samples/sec: 1363.75 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:10:18,885 epoch 7 - iter 12/48 - loss 0.05940567 - time (sec): 5.36 - samples/sec: 1415.95 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:10:20,851 epoch 7 - iter 16/48 - loss 0.05605664 - time (sec): 7.33 - samples/sec: 1448.89 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:10:23,171 epoch 7 - iter 20/48 - loss 0.06559647 - time (sec): 9.65 - samples/sec: 1502.25 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:10:24,522 epoch 7 - iter 24/48 - loss 0.06256993 - time (sec): 11.00 - samples/sec: 1549.19 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:10:26,774 epoch 7 - iter 28/48 - loss 0.06026949 - time (sec): 13.25 - samples/sec: 1505.41 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:10:28,696 epoch 7 - iter 32/48 - loss 0.06041284 - time (sec): 15.17 - samples/sec: 1500.68 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:10:30,717 epoch 7 - iter 36/48 - loss 0.05927659 - time (sec): 17.19 - samples/sec: 1470.21 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:10:33,586 epoch 7 - iter 40/48 - loss 0.05610429 - time (sec): 20.06 - samples/sec: 1451.74 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:10:35,124 epoch 7 - iter 44/48 - loss 0.05626883 - time (sec): 21.60 - samples/sec: 1466.20 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:37,316 epoch 7 - iter 48/48 - loss 0.05544531 - time (sec): 23.79 - samples/sec: 1448.93 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:37,316 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:37,316 EPOCH 7 done: loss 0.0554 - lr: 0.000017
2024-03-26 12:10:38,258 DEV : loss 0.1981896311044693 - f1-score (micro avg)  0.9053
2024-03-26 12:10:38,259 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:40,567 epoch 8 - iter 4/48 - loss 0.04534416 - time (sec): 2.31 - samples/sec: 1208.18 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:42,143 epoch 8 - iter 8/48 - loss 0.02965056 - time (sec): 3.88 - samples/sec: 1399.44 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:10:45,204 epoch 8 - iter 12/48 - loss 0.03215632 - time (sec): 6.95 - samples/sec: 1295.70 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:10:47,642 epoch 8 - iter 16/48 - loss 0.03129876 - time (sec): 9.38 - samples/sec: 1309.25 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:10:49,132 epoch 8 - iter 20/48 - loss 0.03091358 - time (sec): 10.87 - samples/sec: 1366.26 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:10:50,563 epoch 8 - iter 24/48 - loss 0.03131696 - time (sec): 12.30 - samples/sec: 1438.11 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:10:51,878 epoch 8 - iter 28/48 - loss 0.03425023 - time (sec): 13.62 - samples/sec: 1501.33 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:10:54,281 epoch 8 - iter 32/48 - loss 0.03651616 - time (sec): 16.02 - samples/sec: 1446.00 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:10:56,877 epoch 8 - iter 36/48 - loss 0.03602537 - time (sec): 18.62 - samples/sec: 1406.31 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:10:58,925 epoch 8 - iter 40/48 - loss 0.03873332 - time (sec): 20.67 - samples/sec: 1412.22 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:11:01,074 epoch 8 - iter 44/48 - loss 0.04052895 - time (sec): 22.81 - samples/sec: 1400.07 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:11:02,700 epoch 8 - iter 48/48 - loss 0.04041399 - time (sec): 24.44 - samples/sec: 1410.43 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:02,700 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:02,700 EPOCH 8 done: loss 0.0404 - lr: 0.000011
2024-03-26 12:11:03,635 DEV : loss 0.18661607801914215 - f1-score (micro avg)  0.9188
2024-03-26 12:11:03,636 saving best model
2024-03-26 12:11:04,065 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:06,839 epoch 9 - iter 4/48 - loss 0.02788980 - time (sec): 2.77 - samples/sec: 1262.60 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:08,912 epoch 9 - iter 8/48 - loss 0.02223975 - time (sec): 4.85 - samples/sec: 1318.02 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:11,916 epoch 9 - iter 12/48 - loss 0.02509804 - time (sec): 7.85 - samples/sec: 1239.30 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:11:15,050 epoch 9 - iter 16/48 - loss 0.03662374 - time (sec): 10.98 - samples/sec: 1224.07 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:11:15,918 epoch 9 - iter 20/48 - loss 0.03356456 - time (sec): 11.85 - samples/sec: 1314.29 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:11:17,836 epoch 9 - iter 24/48 - loss 0.03206316 - time (sec): 13.77 - samples/sec: 1309.12 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:11:19,863 epoch 9 - iter 28/48 - loss 0.03079525 - time (sec): 15.80 - samples/sec: 1325.63 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:11:20,896 epoch 9 - iter 32/48 - loss 0.03134437 - time (sec): 16.83 - samples/sec: 1388.15 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:11:22,071 epoch 9 - iter 36/48 - loss 0.02974533 - time (sec): 18.00 - samples/sec: 1438.98 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:11:23,388 epoch 9 - iter 40/48 - loss 0.02947689 - time (sec): 19.32 - samples/sec: 1467.99 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:11:26,444 epoch 9 - iter 44/48 - loss 0.03086982 - time (sec): 22.38 - samples/sec: 1441.46 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:27,995 epoch 9 - iter 48/48 - loss 0.03045941 - time (sec): 23.93 - samples/sec: 1440.61 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:27,995 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:27,996 EPOCH 9 done: loss 0.0305 - lr: 0.000006
2024-03-26 12:11:28,933 DEV : loss 0.20570887625217438 - f1-score (micro avg)  0.9248
2024-03-26 12:11:28,936 saving best model
2024-03-26 12:11:29,364 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:32,286 epoch 10 - iter 4/48 - loss 0.02076248 - time (sec): 2.92 - samples/sec: 1271.59 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:34,276 epoch 10 - iter 8/48 - loss 0.01986618 - time (sec): 4.91 - samples/sec: 1316.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:11:36,485 epoch 10 - iter 12/48 - loss 0.02131288 - time (sec): 7.12 - samples/sec: 1277.40 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:11:39,078 epoch 10 - iter 16/48 - loss 0.02075093 - time (sec): 9.71 - samples/sec: 1229.58 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:11:41,706 epoch 10 - iter 20/48 - loss 0.02169695 - time (sec): 12.34 - samples/sec: 1233.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:11:43,127 epoch 10 - iter 24/48 - loss 0.02159281 - time (sec): 13.76 - samples/sec: 1296.16 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:11:44,051 epoch 10 - iter 28/48 - loss 0.02282303 - time (sec): 14.69 - samples/sec: 1364.03 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:11:46,036 epoch 10 - iter 32/48 - loss 0.02684181 - time (sec): 16.67 - samples/sec: 1383.65 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:11:48,346 epoch 10 - iter 36/48 - loss 0.02575977 - time (sec): 18.98 - samples/sec: 1363.04 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:11:50,063 epoch 10 - iter 40/48 - loss 0.02573594 - time (sec): 20.70 - samples/sec: 1387.55 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:11:53,301 epoch 10 - iter 44/48 - loss 0.02535055 - time (sec): 23.94 - samples/sec: 1369.28 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:11:54,015 epoch 10 - iter 48/48 - loss 0.02542471 - time (sec): 24.65 - samples/sec: 1398.49 - lr: 0.000000 - momentum: 0.000000
2024-03-26 12:11:54,015 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:54,016 EPOCH 10 done: loss 0.0254 - lr: 0.000000
2024-03-26 12:11:54,951 DEV : loss 0.2053409367799759 - f1-score (micro avg)  0.9242
2024-03-26 12:11:55,211 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:55,211 Loading model from best epoch ...
2024-03-26 12:11:56,053 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 12:11:56,904 
Results:
- F-score (micro) 0.9106
- F-score (macro) 0.6927
- Accuracy 0.8383

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9046    0.8910    0.8977       266
 Auslagerung     0.8692    0.9076    0.8880       249
         Ort     0.9779    0.9925    0.9852       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.9030    0.9183    0.9106       649
   macro avg     0.6879    0.6978    0.6927       649
weighted avg     0.9062    0.9183    0.9121       649

2024-03-26 12:11:56,905 ----------------------------------------------------------------------------------------------------