File size: 26,622 Bytes
5f1b20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
2024-03-26 12:07:35,602 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Train: 758 sentences
2024-03-26 12:07:35,603 (train_with_dev=False, train_with_test=False)
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Training Params:
2024-03-26 12:07:35,603 - learning_rate: "5e-05"
2024-03-26 12:07:35,603 - mini_batch_size: "16"
2024-03-26 12:07:35,603 - max_epochs: "10"
2024-03-26 12:07:35,603 - shuffle: "True"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Plugins:
2024-03-26 12:07:35,603 - TensorboardLogger
2024-03-26 12:07:35,603 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 12:07:35,603 - metric: "('micro avg', 'f1-score')"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Computation:
2024-03-26 12:07:35,603 - compute on device: cuda:0
2024-03-26 12:07:35,603 - embedding storage: none
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-5"
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 ----------------------------------------------------------------------------------------------------
2024-03-26 12:07:35,603 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 12:07:37,116 epoch 1 - iter 4/48 - loss 3.11778714 - time (sec): 1.51 - samples/sec: 1733.05 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:07:40,030 epoch 1 - iter 8/48 - loss 3.06180791 - time (sec): 4.43 - samples/sec: 1374.97 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:07:41,942 epoch 1 - iter 12/48 - loss 3.01711290 - time (sec): 6.34 - samples/sec: 1405.22 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:07:43,616 epoch 1 - iter 16/48 - loss 2.87606922 - time (sec): 8.01 - samples/sec: 1501.64 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:07:45,827 epoch 1 - iter 20/48 - loss 2.72415315 - time (sec): 10.22 - samples/sec: 1474.93 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:07:48,596 epoch 1 - iter 24/48 - loss 2.55773822 - time (sec): 12.99 - samples/sec: 1420.04 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:07:50,292 epoch 1 - iter 28/48 - loss 2.44445691 - time (sec): 14.69 - samples/sec: 1428.78 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:07:52,479 epoch 1 - iter 32/48 - loss 2.31125320 - time (sec): 16.88 - samples/sec: 1424.49 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:07:54,080 epoch 1 - iter 36/48 - loss 2.21174392 - time (sec): 18.48 - samples/sec: 1445.00 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:07:56,933 epoch 1 - iter 40/48 - loss 2.08390632 - time (sec): 21.33 - samples/sec: 1402.01 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:07:58,146 epoch 1 - iter 44/48 - loss 1.99032800 - time (sec): 22.54 - samples/sec: 1425.92 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:00,046 epoch 1 - iter 48/48 - loss 1.90868499 - time (sec): 24.44 - samples/sec: 1410.32 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:00,047 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:00,047 EPOCH 1 done: loss 1.9087 - lr: 0.000049
2024-03-26 12:08:00,907 DEV : loss 0.543185293674469 - f1-score (micro avg) 0.5736
2024-03-26 12:08:00,908 saving best model
2024-03-26 12:08:01,166 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:03,961 epoch 2 - iter 4/48 - loss 0.63153066 - time (sec): 2.79 - samples/sec: 1235.52 - lr: 0.000050 - momentum: 0.000000
2024-03-26 12:08:05,900 epoch 2 - iter 8/48 - loss 0.57681578 - time (sec): 4.73 - samples/sec: 1294.70 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:07,882 epoch 2 - iter 12/48 - loss 0.55300388 - time (sec): 6.72 - samples/sec: 1328.57 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:08:10,632 epoch 2 - iter 16/48 - loss 0.50764240 - time (sec): 9.46 - samples/sec: 1337.04 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:08:12,057 epoch 2 - iter 20/48 - loss 0.48930833 - time (sec): 10.89 - samples/sec: 1375.75 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:08:14,974 epoch 2 - iter 24/48 - loss 0.45960951 - time (sec): 13.81 - samples/sec: 1296.23 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:08:16,643 epoch 2 - iter 28/48 - loss 0.45452998 - time (sec): 15.48 - samples/sec: 1328.57 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:08:18,696 epoch 2 - iter 32/48 - loss 0.43339098 - time (sec): 17.53 - samples/sec: 1324.50 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:20,523 epoch 2 - iter 36/48 - loss 0.42883053 - time (sec): 19.36 - samples/sec: 1354.11 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:22,919 epoch 2 - iter 40/48 - loss 0.42732543 - time (sec): 21.75 - samples/sec: 1345.70 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:08:25,174 epoch 2 - iter 44/48 - loss 0.41218116 - time (sec): 24.01 - samples/sec: 1351.01 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:26,460 epoch 2 - iter 48/48 - loss 0.40616007 - time (sec): 25.29 - samples/sec: 1362.89 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:08:26,460 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:26,460 EPOCH 2 done: loss 0.4062 - lr: 0.000045
2024-03-26 12:08:27,390 DEV : loss 0.27681225538253784 - f1-score (micro avg) 0.8318
2024-03-26 12:08:27,391 saving best model
2024-03-26 12:08:27,828 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:28,926 epoch 3 - iter 4/48 - loss 0.32628564 - time (sec): 1.10 - samples/sec: 2035.62 - lr: 0.000044 - momentum: 0.000000
2024-03-26 12:08:30,864 epoch 3 - iter 8/48 - loss 0.33108745 - time (sec): 3.03 - samples/sec: 1623.66 - lr: 0.000044 - momentum: 0.000000
2024-03-26 12:08:33,122 epoch 3 - iter 12/48 - loss 0.27482260 - time (sec): 5.29 - samples/sec: 1620.20 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:08:35,099 epoch 3 - iter 16/48 - loss 0.26946915 - time (sec): 7.27 - samples/sec: 1564.76 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:08:37,028 epoch 3 - iter 20/48 - loss 0.26156635 - time (sec): 9.20 - samples/sec: 1541.20 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:08:39,027 epoch 3 - iter 24/48 - loss 0.24592552 - time (sec): 11.20 - samples/sec: 1497.12 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:08:42,330 epoch 3 - iter 28/48 - loss 0.23213405 - time (sec): 14.50 - samples/sec: 1380.43 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:08:43,890 epoch 3 - iter 32/48 - loss 0.23144593 - time (sec): 16.06 - samples/sec: 1402.51 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:08:47,297 epoch 3 - iter 36/48 - loss 0.22295835 - time (sec): 19.47 - samples/sec: 1332.44 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:49,782 epoch 3 - iter 40/48 - loss 0.22193128 - time (sec): 21.95 - samples/sec: 1332.98 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:51,917 epoch 3 - iter 44/48 - loss 0.21408438 - time (sec): 24.09 - samples/sec: 1332.17 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:08:53,552 epoch 3 - iter 48/48 - loss 0.21266740 - time (sec): 25.72 - samples/sec: 1340.16 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:08:53,552 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:53,553 EPOCH 3 done: loss 0.2127 - lr: 0.000039
2024-03-26 12:08:54,484 DEV : loss 0.21906423568725586 - f1-score (micro avg) 0.8593
2024-03-26 12:08:54,484 saving best model
2024-03-26 12:08:54,900 ----------------------------------------------------------------------------------------------------
2024-03-26 12:08:57,975 epoch 4 - iter 4/48 - loss 0.11740549 - time (sec): 3.07 - samples/sec: 1213.56 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:08:59,460 epoch 4 - iter 8/48 - loss 0.14421906 - time (sec): 4.56 - samples/sec: 1364.34 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:09:02,077 epoch 4 - iter 12/48 - loss 0.12918348 - time (sec): 7.17 - samples/sec: 1296.27 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:09:04,779 epoch 4 - iter 16/48 - loss 0.11996799 - time (sec): 9.88 - samples/sec: 1285.46 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:09:07,047 epoch 4 - iter 20/48 - loss 0.11541074 - time (sec): 12.14 - samples/sec: 1299.45 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:09:08,575 epoch 4 - iter 24/48 - loss 0.11274160 - time (sec): 13.67 - samples/sec: 1333.36 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:09:11,000 epoch 4 - iter 28/48 - loss 0.11571890 - time (sec): 16.10 - samples/sec: 1319.57 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:09:14,037 epoch 4 - iter 32/48 - loss 0.11758783 - time (sec): 19.13 - samples/sec: 1309.67 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:09:15,742 epoch 4 - iter 36/48 - loss 0.12156915 - time (sec): 20.84 - samples/sec: 1331.89 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:09:16,734 epoch 4 - iter 40/48 - loss 0.12483162 - time (sec): 21.83 - samples/sec: 1375.49 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:18,269 epoch 4 - iter 44/48 - loss 0.12429368 - time (sec): 23.37 - samples/sec: 1392.27 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:19,156 epoch 4 - iter 48/48 - loss 0.12572472 - time (sec): 24.25 - samples/sec: 1421.29 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:09:19,156 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:19,156 EPOCH 4 done: loss 0.1257 - lr: 0.000034
2024-03-26 12:09:20,185 DEV : loss 0.20740923285484314 - f1-score (micro avg) 0.8866
2024-03-26 12:09:20,186 saving best model
2024-03-26 12:09:20,621 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:22,459 epoch 5 - iter 4/48 - loss 0.12090102 - time (sec): 1.84 - samples/sec: 1564.49 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:09:24,361 epoch 5 - iter 8/48 - loss 0.08690955 - time (sec): 3.74 - samples/sec: 1659.97 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:09:27,482 epoch 5 - iter 12/48 - loss 0.08537459 - time (sec): 6.86 - samples/sec: 1402.63 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:09:28,855 epoch 5 - iter 16/48 - loss 0.08004747 - time (sec): 8.23 - samples/sec: 1444.41 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:09:31,229 epoch 5 - iter 20/48 - loss 0.09057165 - time (sec): 10.61 - samples/sec: 1420.83 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:09:33,382 epoch 5 - iter 24/48 - loss 0.09118019 - time (sec): 12.76 - samples/sec: 1393.20 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:09:34,792 epoch 5 - iter 28/48 - loss 0.09617832 - time (sec): 14.17 - samples/sec: 1432.13 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:09:36,185 epoch 5 - iter 32/48 - loss 0.09826878 - time (sec): 15.56 - samples/sec: 1464.92 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:09:38,457 epoch 5 - iter 36/48 - loss 0.09846321 - time (sec): 17.83 - samples/sec: 1448.02 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:40,324 epoch 5 - iter 40/48 - loss 0.09674286 - time (sec): 19.70 - samples/sec: 1447.10 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:42,409 epoch 5 - iter 44/48 - loss 0.09638321 - time (sec): 21.79 - samples/sec: 1457.16 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:09:44,567 epoch 5 - iter 48/48 - loss 0.09397791 - time (sec): 23.94 - samples/sec: 1439.72 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:09:44,567 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:44,567 EPOCH 5 done: loss 0.0940 - lr: 0.000028
2024-03-26 12:09:45,505 DEV : loss 0.20168490707874298 - f1-score (micro avg) 0.9022
2024-03-26 12:09:45,506 saving best model
2024-03-26 12:09:45,935 ----------------------------------------------------------------------------------------------------
2024-03-26 12:09:47,883 epoch 6 - iter 4/48 - loss 0.07053445 - time (sec): 1.95 - samples/sec: 1410.89 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:09:50,791 epoch 6 - iter 8/48 - loss 0.08016896 - time (sec): 4.85 - samples/sec: 1309.39 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:09:52,691 epoch 6 - iter 12/48 - loss 0.08291448 - time (sec): 6.75 - samples/sec: 1336.93 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:09:54,289 epoch 6 - iter 16/48 - loss 0.08691650 - time (sec): 8.35 - samples/sec: 1385.28 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:09:57,045 epoch 6 - iter 20/48 - loss 0.08104279 - time (sec): 11.11 - samples/sec: 1312.62 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:09:59,801 epoch 6 - iter 24/48 - loss 0.07372277 - time (sec): 13.86 - samples/sec: 1288.63 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:10:02,342 epoch 6 - iter 28/48 - loss 0.07189241 - time (sec): 16.40 - samples/sec: 1264.89 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:10:03,750 epoch 6 - iter 32/48 - loss 0.07946674 - time (sec): 17.81 - samples/sec: 1308.82 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:10:05,666 epoch 6 - iter 36/48 - loss 0.07790067 - time (sec): 19.73 - samples/sec: 1320.00 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:10:06,692 epoch 6 - iter 40/48 - loss 0.07657290 - time (sec): 20.75 - samples/sec: 1359.22 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:09,222 epoch 6 - iter 44/48 - loss 0.07393162 - time (sec): 23.28 - samples/sec: 1336.25 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:12,106 epoch 6 - iter 48/48 - loss 0.06893913 - time (sec): 26.17 - samples/sec: 1317.26 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:10:12,107 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:12,107 EPOCH 6 done: loss 0.0689 - lr: 0.000023
2024-03-26 12:10:13,053 DEV : loss 0.19028829038143158 - f1-score (micro avg) 0.9094
2024-03-26 12:10:13,054 saving best model
2024-03-26 12:10:13,523 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:15,702 epoch 7 - iter 4/48 - loss 0.03780100 - time (sec): 2.18 - samples/sec: 1335.71 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:10:17,432 epoch 7 - iter 8/48 - loss 0.03164946 - time (sec): 3.91 - samples/sec: 1363.75 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:10:18,885 epoch 7 - iter 12/48 - loss 0.05940567 - time (sec): 5.36 - samples/sec: 1415.95 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:10:20,851 epoch 7 - iter 16/48 - loss 0.05605664 - time (sec): 7.33 - samples/sec: 1448.89 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:10:23,171 epoch 7 - iter 20/48 - loss 0.06559647 - time (sec): 9.65 - samples/sec: 1502.25 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:10:24,522 epoch 7 - iter 24/48 - loss 0.06256993 - time (sec): 11.00 - samples/sec: 1549.19 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:10:26,774 epoch 7 - iter 28/48 - loss 0.06026949 - time (sec): 13.25 - samples/sec: 1505.41 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:10:28,696 epoch 7 - iter 32/48 - loss 0.06041284 - time (sec): 15.17 - samples/sec: 1500.68 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:10:30,717 epoch 7 - iter 36/48 - loss 0.05927659 - time (sec): 17.19 - samples/sec: 1470.21 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:10:33,586 epoch 7 - iter 40/48 - loss 0.05610429 - time (sec): 20.06 - samples/sec: 1451.74 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:10:35,124 epoch 7 - iter 44/48 - loss 0.05626883 - time (sec): 21.60 - samples/sec: 1466.20 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:37,316 epoch 7 - iter 48/48 - loss 0.05544531 - time (sec): 23.79 - samples/sec: 1448.93 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:37,316 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:37,316 EPOCH 7 done: loss 0.0554 - lr: 0.000017
2024-03-26 12:10:38,258 DEV : loss 0.1981896311044693 - f1-score (micro avg) 0.9053
2024-03-26 12:10:38,259 ----------------------------------------------------------------------------------------------------
2024-03-26 12:10:40,567 epoch 8 - iter 4/48 - loss 0.04534416 - time (sec): 2.31 - samples/sec: 1208.18 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:10:42,143 epoch 8 - iter 8/48 - loss 0.02965056 - time (sec): 3.88 - samples/sec: 1399.44 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:10:45,204 epoch 8 - iter 12/48 - loss 0.03215632 - time (sec): 6.95 - samples/sec: 1295.70 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:10:47,642 epoch 8 - iter 16/48 - loss 0.03129876 - time (sec): 9.38 - samples/sec: 1309.25 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:10:49,132 epoch 8 - iter 20/48 - loss 0.03091358 - time (sec): 10.87 - samples/sec: 1366.26 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:10:50,563 epoch 8 - iter 24/48 - loss 0.03131696 - time (sec): 12.30 - samples/sec: 1438.11 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:10:51,878 epoch 8 - iter 28/48 - loss 0.03425023 - time (sec): 13.62 - samples/sec: 1501.33 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:10:54,281 epoch 8 - iter 32/48 - loss 0.03651616 - time (sec): 16.02 - samples/sec: 1446.00 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:10:56,877 epoch 8 - iter 36/48 - loss 0.03602537 - time (sec): 18.62 - samples/sec: 1406.31 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:10:58,925 epoch 8 - iter 40/48 - loss 0.03873332 - time (sec): 20.67 - samples/sec: 1412.22 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:11:01,074 epoch 8 - iter 44/48 - loss 0.04052895 - time (sec): 22.81 - samples/sec: 1400.07 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:11:02,700 epoch 8 - iter 48/48 - loss 0.04041399 - time (sec): 24.44 - samples/sec: 1410.43 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:02,700 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:02,700 EPOCH 8 done: loss 0.0404 - lr: 0.000011
2024-03-26 12:11:03,635 DEV : loss 0.18661607801914215 - f1-score (micro avg) 0.9188
2024-03-26 12:11:03,636 saving best model
2024-03-26 12:11:04,065 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:06,839 epoch 9 - iter 4/48 - loss 0.02788980 - time (sec): 2.77 - samples/sec: 1262.60 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:08,912 epoch 9 - iter 8/48 - loss 0.02223975 - time (sec): 4.85 - samples/sec: 1318.02 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:11:11,916 epoch 9 - iter 12/48 - loss 0.02509804 - time (sec): 7.85 - samples/sec: 1239.30 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:11:15,050 epoch 9 - iter 16/48 - loss 0.03662374 - time (sec): 10.98 - samples/sec: 1224.07 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:11:15,918 epoch 9 - iter 20/48 - loss 0.03356456 - time (sec): 11.85 - samples/sec: 1314.29 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:11:17,836 epoch 9 - iter 24/48 - loss 0.03206316 - time (sec): 13.77 - samples/sec: 1309.12 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:11:19,863 epoch 9 - iter 28/48 - loss 0.03079525 - time (sec): 15.80 - samples/sec: 1325.63 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:11:20,896 epoch 9 - iter 32/48 - loss 0.03134437 - time (sec): 16.83 - samples/sec: 1388.15 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:11:22,071 epoch 9 - iter 36/48 - loss 0.02974533 - time (sec): 18.00 - samples/sec: 1438.98 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:11:23,388 epoch 9 - iter 40/48 - loss 0.02947689 - time (sec): 19.32 - samples/sec: 1467.99 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:11:26,444 epoch 9 - iter 44/48 - loss 0.03086982 - time (sec): 22.38 - samples/sec: 1441.46 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:27,995 epoch 9 - iter 48/48 - loss 0.03045941 - time (sec): 23.93 - samples/sec: 1440.61 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:27,995 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:27,996 EPOCH 9 done: loss 0.0305 - lr: 0.000006
2024-03-26 12:11:28,933 DEV : loss 0.20570887625217438 - f1-score (micro avg) 0.9248
2024-03-26 12:11:28,936 saving best model
2024-03-26 12:11:29,364 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:32,286 epoch 10 - iter 4/48 - loss 0.02076248 - time (sec): 2.92 - samples/sec: 1271.59 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:11:34,276 epoch 10 - iter 8/48 - loss 0.01986618 - time (sec): 4.91 - samples/sec: 1316.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:11:36,485 epoch 10 - iter 12/48 - loss 0.02131288 - time (sec): 7.12 - samples/sec: 1277.40 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:11:39,078 epoch 10 - iter 16/48 - loss 0.02075093 - time (sec): 9.71 - samples/sec: 1229.58 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:11:41,706 epoch 10 - iter 20/48 - loss 0.02169695 - time (sec): 12.34 - samples/sec: 1233.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:11:43,127 epoch 10 - iter 24/48 - loss 0.02159281 - time (sec): 13.76 - samples/sec: 1296.16 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:11:44,051 epoch 10 - iter 28/48 - loss 0.02282303 - time (sec): 14.69 - samples/sec: 1364.03 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:11:46,036 epoch 10 - iter 32/48 - loss 0.02684181 - time (sec): 16.67 - samples/sec: 1383.65 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:11:48,346 epoch 10 - iter 36/48 - loss 0.02575977 - time (sec): 18.98 - samples/sec: 1363.04 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:11:50,063 epoch 10 - iter 40/48 - loss 0.02573594 - time (sec): 20.70 - samples/sec: 1387.55 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:11:53,301 epoch 10 - iter 44/48 - loss 0.02535055 - time (sec): 23.94 - samples/sec: 1369.28 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:11:54,015 epoch 10 - iter 48/48 - loss 0.02542471 - time (sec): 24.65 - samples/sec: 1398.49 - lr: 0.000000 - momentum: 0.000000
2024-03-26 12:11:54,015 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:54,016 EPOCH 10 done: loss 0.0254 - lr: 0.000000
2024-03-26 12:11:54,951 DEV : loss 0.2053409367799759 - f1-score (micro avg) 0.9242
2024-03-26 12:11:55,211 ----------------------------------------------------------------------------------------------------
2024-03-26 12:11:55,211 Loading model from best epoch ...
2024-03-26 12:11:56,053 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 12:11:56,904
Results:
- F-score (micro) 0.9106
- F-score (macro) 0.6927
- Accuracy 0.8383
By class:
precision recall f1-score support
Unternehmen 0.9046 0.8910 0.8977 266
Auslagerung 0.8692 0.9076 0.8880 249
Ort 0.9779 0.9925 0.9852 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9030 0.9183 0.9106 649
macro avg 0.6879 0.6978 0.6927 649
weighted avg 0.9062 0.9183 0.9121 649
2024-03-26 12:11:56,905 ----------------------------------------------------------------------------------------------------
|