File size: 26,535 Bytes
d360f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(30001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Train:  758 sentences
2024-03-26 11:33:29,248         (train_with_dev=False, train_with_test=False)
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Training Params:
2024-03-26 11:33:29,248  - learning_rate: "5e-05" 
2024-03-26 11:33:29,248  - mini_batch_size: "16"
2024-03-26 11:33:29,248  - max_epochs: "10"
2024-03-26 11:33:29,248  - shuffle: "True"
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Plugins:
2024-03-26 11:33:29,248  - TensorboardLogger
2024-03-26 11:33:29,248  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:33:29,248  - metric: "('micro avg', 'f1-score')"
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Computation:
2024-03-26 11:33:29,248  - compute on device: cuda:0
2024-03-26 11:33:29,248  - embedding storage: none
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,248 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-3"
2024-03-26 11:33:29,248 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,249 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:29,249 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:33:30,579 epoch 1 - iter 4/48 - loss 3.07489042 - time (sec): 1.33 - samples/sec: 2069.01 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:33:32,704 epoch 1 - iter 8/48 - loss 3.08771911 - time (sec): 3.46 - samples/sec: 1685.38 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:33:34,228 epoch 1 - iter 12/48 - loss 2.94390144 - time (sec): 4.98 - samples/sec: 1681.86 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:33:37,270 epoch 1 - iter 16/48 - loss 2.77162015 - time (sec): 8.02 - samples/sec: 1445.94 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:33:39,010 epoch 1 - iter 20/48 - loss 2.60962695 - time (sec): 9.76 - samples/sec: 1475.60 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:33:40,472 epoch 1 - iter 24/48 - loss 2.51067364 - time (sec): 11.22 - samples/sec: 1529.72 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:33:41,866 epoch 1 - iter 28/48 - loss 2.39999582 - time (sec): 12.62 - samples/sec: 1547.60 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:33:44,008 epoch 1 - iter 32/48 - loss 2.27938260 - time (sec): 14.76 - samples/sec: 1539.92 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:33:45,593 epoch 1 - iter 36/48 - loss 2.16989687 - time (sec): 16.34 - samples/sec: 1561.40 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:33:47,867 epoch 1 - iter 40/48 - loss 2.03915890 - time (sec): 18.62 - samples/sec: 1556.37 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:33:49,800 epoch 1 - iter 44/48 - loss 1.93179330 - time (sec): 20.55 - samples/sec: 1560.33 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:33:51,477 epoch 1 - iter 48/48 - loss 1.84076884 - time (sec): 22.23 - samples/sec: 1550.84 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:33:51,477 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:51,477 EPOCH 1 done: loss 1.8408 - lr: 0.000049
2024-03-26 11:33:52,341 DEV : loss 0.5940399169921875 - f1-score (micro avg)  0.635
2024-03-26 11:33:52,342 saving best model
2024-03-26 11:33:52,617 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:54,062 epoch 2 - iter 4/48 - loss 0.72316569 - time (sec): 1.44 - samples/sec: 1727.06 - lr: 0.000050 - momentum: 0.000000
2024-03-26 11:33:55,558 epoch 2 - iter 8/48 - loss 0.57588712 - time (sec): 2.94 - samples/sec: 1659.65 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:33:57,043 epoch 2 - iter 12/48 - loss 0.56563452 - time (sec): 4.43 - samples/sec: 1737.03 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:33:59,008 epoch 2 - iter 16/48 - loss 0.52469522 - time (sec): 6.39 - samples/sec: 1683.10 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:34:01,353 epoch 2 - iter 20/48 - loss 0.50473970 - time (sec): 8.74 - samples/sec: 1623.17 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:34:03,440 epoch 2 - iter 24/48 - loss 0.47203328 - time (sec): 10.82 - samples/sec: 1602.62 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:34:06,292 epoch 2 - iter 28/48 - loss 0.46192324 - time (sec): 13.68 - samples/sec: 1530.16 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:34:08,529 epoch 2 - iter 32/48 - loss 0.44576921 - time (sec): 15.91 - samples/sec: 1500.06 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:34:10,295 epoch 2 - iter 36/48 - loss 0.43726579 - time (sec): 17.68 - samples/sec: 1494.39 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:34:12,061 epoch 2 - iter 40/48 - loss 0.43733009 - time (sec): 19.44 - samples/sec: 1500.28 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:34:14,381 epoch 2 - iter 44/48 - loss 0.42304062 - time (sec): 21.76 - samples/sec: 1488.86 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:34:15,946 epoch 2 - iter 48/48 - loss 0.41515240 - time (sec): 23.33 - samples/sec: 1477.66 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:34:15,946 ----------------------------------------------------------------------------------------------------
2024-03-26 11:34:15,946 EPOCH 2 done: loss 0.4152 - lr: 0.000045
2024-03-26 11:34:16,914 DEV : loss 0.26913678646087646 - f1-score (micro avg)  0.8164
2024-03-26 11:34:16,917 saving best model
2024-03-26 11:34:17,390 ----------------------------------------------------------------------------------------------------
2024-03-26 11:34:18,964 epoch 3 - iter 4/48 - loss 0.27840730 - time (sec): 1.57 - samples/sec: 1558.05 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:34:21,788 epoch 3 - iter 8/48 - loss 0.22660795 - time (sec): 4.40 - samples/sec: 1303.04 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:34:23,083 epoch 3 - iter 12/48 - loss 0.22777721 - time (sec): 5.69 - samples/sec: 1431.27 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:34:24,492 epoch 3 - iter 16/48 - loss 0.20623331 - time (sec): 7.10 - samples/sec: 1554.57 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:34:26,009 epoch 3 - iter 20/48 - loss 0.20655534 - time (sec): 8.62 - samples/sec: 1567.86 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:34:28,814 epoch 3 - iter 24/48 - loss 0.20077536 - time (sec): 11.42 - samples/sec: 1462.28 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:34:30,804 epoch 3 - iter 28/48 - loss 0.20515197 - time (sec): 13.41 - samples/sec: 1477.75 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:34:33,323 epoch 3 - iter 32/48 - loss 0.19788947 - time (sec): 15.93 - samples/sec: 1431.16 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:34:35,287 epoch 3 - iter 36/48 - loss 0.20165014 - time (sec): 17.90 - samples/sec: 1429.28 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:34:37,666 epoch 3 - iter 40/48 - loss 0.19334685 - time (sec): 20.27 - samples/sec: 1408.84 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:34:40,145 epoch 3 - iter 44/48 - loss 0.20288087 - time (sec): 22.75 - samples/sec: 1398.52 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:34:42,579 epoch 3 - iter 48/48 - loss 0.19661772 - time (sec): 25.19 - samples/sec: 1368.61 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:34:42,579 ----------------------------------------------------------------------------------------------------
2024-03-26 11:34:42,579 EPOCH 3 done: loss 0.1966 - lr: 0.000039
2024-03-26 11:34:43,613 DEV : loss 0.21700386703014374 - f1-score (micro avg)  0.8608
2024-03-26 11:34:43,614 saving best model
2024-03-26 11:34:44,036 ----------------------------------------------------------------------------------------------------
2024-03-26 11:34:45,449 epoch 4 - iter 4/48 - loss 0.14641328 - time (sec): 1.41 - samples/sec: 1773.85 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:34:47,395 epoch 4 - iter 8/48 - loss 0.13808574 - time (sec): 3.36 - samples/sec: 1595.81 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:34:50,115 epoch 4 - iter 12/48 - loss 0.12876595 - time (sec): 6.08 - samples/sec: 1388.37 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:34:52,081 epoch 4 - iter 16/48 - loss 0.13156323 - time (sec): 8.04 - samples/sec: 1407.85 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:34:54,572 epoch 4 - iter 20/48 - loss 0.12428123 - time (sec): 10.53 - samples/sec: 1394.75 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:34:57,507 epoch 4 - iter 24/48 - loss 0.11793333 - time (sec): 13.47 - samples/sec: 1353.70 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:34:58,691 epoch 4 - iter 28/48 - loss 0.11608881 - time (sec): 14.65 - samples/sec: 1386.24 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:35:01,804 epoch 4 - iter 32/48 - loss 0.11458934 - time (sec): 17.77 - samples/sec: 1329.30 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:35:03,594 epoch 4 - iter 36/48 - loss 0.11846800 - time (sec): 19.56 - samples/sec: 1360.43 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:35:06,500 epoch 4 - iter 40/48 - loss 0.12511856 - time (sec): 22.46 - samples/sec: 1330.40 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:35:07,417 epoch 4 - iter 44/48 - loss 0.12629946 - time (sec): 23.38 - samples/sec: 1376.32 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:35:08,913 epoch 4 - iter 48/48 - loss 0.12787118 - time (sec): 24.88 - samples/sec: 1385.74 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:35:08,914 ----------------------------------------------------------------------------------------------------
2024-03-26 11:35:08,914 EPOCH 4 done: loss 0.1279 - lr: 0.000034
2024-03-26 11:35:09,895 DEV : loss 0.18662486970424652 - f1-score (micro avg)  0.8817
2024-03-26 11:35:09,897 saving best model
2024-03-26 11:35:10,332 ----------------------------------------------------------------------------------------------------
2024-03-26 11:35:12,809 epoch 5 - iter 4/48 - loss 0.06830634 - time (sec): 2.48 - samples/sec: 1283.35 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:35:14,268 epoch 5 - iter 8/48 - loss 0.08573760 - time (sec): 3.94 - samples/sec: 1446.25 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:35:15,788 epoch 5 - iter 12/48 - loss 0.08684380 - time (sec): 5.46 - samples/sec: 1510.47 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:35:18,018 epoch 5 - iter 16/48 - loss 0.08965837 - time (sec): 7.69 - samples/sec: 1431.53 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:35:20,150 epoch 5 - iter 20/48 - loss 0.10094467 - time (sec): 9.82 - samples/sec: 1434.23 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:35:22,751 epoch 5 - iter 24/48 - loss 0.09379417 - time (sec): 12.42 - samples/sec: 1417.55 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:35:25,342 epoch 5 - iter 28/48 - loss 0.08737934 - time (sec): 15.01 - samples/sec: 1402.35 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:35:27,327 epoch 5 - iter 32/48 - loss 0.08652809 - time (sec): 16.99 - samples/sec: 1401.19 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:35:29,218 epoch 5 - iter 36/48 - loss 0.08405259 - time (sec): 18.89 - samples/sec: 1400.33 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:35:31,655 epoch 5 - iter 40/48 - loss 0.08424074 - time (sec): 21.32 - samples/sec: 1385.12 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:35:33,674 epoch 5 - iter 44/48 - loss 0.08675698 - time (sec): 23.34 - samples/sec: 1383.79 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:35:34,768 epoch 5 - iter 48/48 - loss 0.08578516 - time (sec): 24.44 - samples/sec: 1410.70 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:35:34,769 ----------------------------------------------------------------------------------------------------
2024-03-26 11:35:34,769 EPOCH 5 done: loss 0.0858 - lr: 0.000028
2024-03-26 11:35:35,716 DEV : loss 0.17283330857753754 - f1-score (micro avg)  0.8942
2024-03-26 11:35:35,717 saving best model
2024-03-26 11:35:36,174 ----------------------------------------------------------------------------------------------------
2024-03-26 11:35:38,850 epoch 6 - iter 4/48 - loss 0.05365840 - time (sec): 2.68 - samples/sec: 1188.40 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:35:40,878 epoch 6 - iter 8/48 - loss 0.05720723 - time (sec): 4.70 - samples/sec: 1248.47 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:35:42,486 epoch 6 - iter 12/48 - loss 0.06649040 - time (sec): 6.31 - samples/sec: 1397.93 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:35:44,519 epoch 6 - iter 16/48 - loss 0.06053967 - time (sec): 8.34 - samples/sec: 1393.76 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:35:45,652 epoch 6 - iter 20/48 - loss 0.05981345 - time (sec): 9.48 - samples/sec: 1474.40 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:35:47,585 epoch 6 - iter 24/48 - loss 0.05907532 - time (sec): 11.41 - samples/sec: 1464.86 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:35:48,768 epoch 6 - iter 28/48 - loss 0.06005105 - time (sec): 12.59 - samples/sec: 1510.48 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:35:50,567 epoch 6 - iter 32/48 - loss 0.05586702 - time (sec): 14.39 - samples/sec: 1530.72 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:35:53,101 epoch 6 - iter 36/48 - loss 0.06595337 - time (sec): 16.93 - samples/sec: 1500.21 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:35:55,243 epoch 6 - iter 40/48 - loss 0.06371281 - time (sec): 19.07 - samples/sec: 1490.16 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:35:57,163 epoch 6 - iter 44/48 - loss 0.06590059 - time (sec): 20.99 - samples/sec: 1498.80 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:35:58,837 epoch 6 - iter 48/48 - loss 0.06662131 - time (sec): 22.66 - samples/sec: 1521.17 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:35:58,837 ----------------------------------------------------------------------------------------------------
2024-03-26 11:35:58,837 EPOCH 6 done: loss 0.0666 - lr: 0.000023
2024-03-26 11:35:59,808 DEV : loss 0.15879587829113007 - f1-score (micro avg)  0.9341
2024-03-26 11:35:59,809 saving best model
2024-03-26 11:36:00,267 ----------------------------------------------------------------------------------------------------
2024-03-26 11:36:02,501 epoch 7 - iter 4/48 - loss 0.07284967 - time (sec): 2.23 - samples/sec: 1237.82 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:36:04,244 epoch 7 - iter 8/48 - loss 0.05810049 - time (sec): 3.98 - samples/sec: 1445.13 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:36:06,352 epoch 7 - iter 12/48 - loss 0.04687988 - time (sec): 6.08 - samples/sec: 1408.13 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:36:09,051 epoch 7 - iter 16/48 - loss 0.04388564 - time (sec): 8.78 - samples/sec: 1345.71 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:36:11,822 epoch 7 - iter 20/48 - loss 0.04451078 - time (sec): 11.55 - samples/sec: 1352.70 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:36:13,366 epoch 7 - iter 24/48 - loss 0.04438006 - time (sec): 13.10 - samples/sec: 1376.06 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:36:15,571 epoch 7 - iter 28/48 - loss 0.04184705 - time (sec): 15.30 - samples/sec: 1390.16 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:36:17,773 epoch 7 - iter 32/48 - loss 0.04525184 - time (sec): 17.51 - samples/sec: 1396.63 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:36:20,032 epoch 7 - iter 36/48 - loss 0.04947562 - time (sec): 19.76 - samples/sec: 1385.10 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:36:21,659 epoch 7 - iter 40/48 - loss 0.04694456 - time (sec): 21.39 - samples/sec: 1393.87 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:36:23,419 epoch 7 - iter 44/48 - loss 0.05016226 - time (sec): 23.15 - samples/sec: 1408.92 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:36:24,776 epoch 7 - iter 48/48 - loss 0.04985462 - time (sec): 24.51 - samples/sec: 1406.54 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:36:24,777 ----------------------------------------------------------------------------------------------------
2024-03-26 11:36:24,777 EPOCH 7 done: loss 0.0499 - lr: 0.000017
2024-03-26 11:36:25,828 DEV : loss 0.16802552342414856 - f1-score (micro avg)  0.9333
2024-03-26 11:36:25,830 ----------------------------------------------------------------------------------------------------
2024-03-26 11:36:28,176 epoch 8 - iter 4/48 - loss 0.02523109 - time (sec): 2.35 - samples/sec: 1253.12 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:36:30,775 epoch 8 - iter 8/48 - loss 0.02208519 - time (sec): 4.94 - samples/sec: 1337.73 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:36:32,833 epoch 8 - iter 12/48 - loss 0.02316165 - time (sec): 7.00 - samples/sec: 1314.10 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:36:34,948 epoch 8 - iter 16/48 - loss 0.02270118 - time (sec): 9.12 - samples/sec: 1315.04 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:36:36,478 epoch 8 - iter 20/48 - loss 0.02510760 - time (sec): 10.65 - samples/sec: 1342.76 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:36:38,968 epoch 8 - iter 24/48 - loss 0.02440371 - time (sec): 13.14 - samples/sec: 1319.99 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:36:41,209 epoch 8 - iter 28/48 - loss 0.02404743 - time (sec): 15.38 - samples/sec: 1310.63 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:36:43,580 epoch 8 - iter 32/48 - loss 0.03201898 - time (sec): 17.75 - samples/sec: 1322.64 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:36:46,883 epoch 8 - iter 36/48 - loss 0.03651999 - time (sec): 21.05 - samples/sec: 1274.74 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:36:48,978 epoch 8 - iter 40/48 - loss 0.04125936 - time (sec): 23.15 - samples/sec: 1278.60 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:36:49,806 epoch 8 - iter 44/48 - loss 0.04000375 - time (sec): 23.98 - samples/sec: 1325.12 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:36:51,680 epoch 8 - iter 48/48 - loss 0.03939075 - time (sec): 25.85 - samples/sec: 1333.53 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:36:51,681 ----------------------------------------------------------------------------------------------------
2024-03-26 11:36:51,681 EPOCH 8 done: loss 0.0394 - lr: 0.000011
2024-03-26 11:36:52,644 DEV : loss 0.18046870827674866 - f1-score (micro avg)  0.9294
2024-03-26 11:36:52,647 ----------------------------------------------------------------------------------------------------
2024-03-26 11:36:55,407 epoch 9 - iter 4/48 - loss 0.01368922 - time (sec): 2.76 - samples/sec: 1195.26 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:36:57,113 epoch 9 - iter 8/48 - loss 0.02194754 - time (sec): 4.47 - samples/sec: 1284.97 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:36:59,325 epoch 9 - iter 12/48 - loss 0.02259365 - time (sec): 6.68 - samples/sec: 1344.23 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:37:01,488 epoch 9 - iter 16/48 - loss 0.02747245 - time (sec): 8.84 - samples/sec: 1369.80 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:37:03,868 epoch 9 - iter 20/48 - loss 0.02337877 - time (sec): 11.22 - samples/sec: 1348.38 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:37:05,818 epoch 9 - iter 24/48 - loss 0.02369286 - time (sec): 13.17 - samples/sec: 1344.53 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:37:09,104 epoch 9 - iter 28/48 - loss 0.02677139 - time (sec): 16.46 - samples/sec: 1298.13 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:37:10,540 epoch 9 - iter 32/48 - loss 0.02760924 - time (sec): 17.89 - samples/sec: 1335.17 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:37:13,071 epoch 9 - iter 36/48 - loss 0.02778603 - time (sec): 20.42 - samples/sec: 1319.50 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:37:14,592 epoch 9 - iter 40/48 - loss 0.02879429 - time (sec): 21.94 - samples/sec: 1336.09 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:37:16,189 epoch 9 - iter 44/48 - loss 0.03224152 - time (sec): 23.54 - samples/sec: 1351.25 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:37:17,651 epoch 9 - iter 48/48 - loss 0.03182031 - time (sec): 25.00 - samples/sec: 1378.69 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:37:17,651 ----------------------------------------------------------------------------------------------------
2024-03-26 11:37:17,651 EPOCH 9 done: loss 0.0318 - lr: 0.000006
2024-03-26 11:37:18,590 DEV : loss 0.18695427477359772 - f1-score (micro avg)  0.9263
2024-03-26 11:37:18,591 ----------------------------------------------------------------------------------------------------
2024-03-26 11:37:21,015 epoch 10 - iter 4/48 - loss 0.02264444 - time (sec): 2.42 - samples/sec: 1358.51 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:37:22,976 epoch 10 - iter 8/48 - loss 0.01694052 - time (sec): 4.38 - samples/sec: 1333.02 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:37:24,212 epoch 10 - iter 12/48 - loss 0.02510073 - time (sec): 5.62 - samples/sec: 1484.16 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:37:25,824 epoch 10 - iter 16/48 - loss 0.02807504 - time (sec): 7.23 - samples/sec: 1551.36 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:37:27,540 epoch 10 - iter 20/48 - loss 0.02802998 - time (sec): 8.95 - samples/sec: 1595.24 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:37:29,677 epoch 10 - iter 24/48 - loss 0.02579472 - time (sec): 11.09 - samples/sec: 1537.39 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:37:31,826 epoch 10 - iter 28/48 - loss 0.02330368 - time (sec): 13.23 - samples/sec: 1507.27 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:37:34,002 epoch 10 - iter 32/48 - loss 0.02482044 - time (sec): 15.41 - samples/sec: 1513.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:37:35,409 epoch 10 - iter 36/48 - loss 0.02437032 - time (sec): 16.82 - samples/sec: 1516.24 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:37:38,098 epoch 10 - iter 40/48 - loss 0.02266370 - time (sec): 19.51 - samples/sec: 1479.35 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:37:40,623 epoch 10 - iter 44/48 - loss 0.02605707 - time (sec): 22.03 - samples/sec: 1459.52 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:37:42,293 epoch 10 - iter 48/48 - loss 0.02700708 - time (sec): 23.70 - samples/sec: 1454.42 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:37:42,293 ----------------------------------------------------------------------------------------------------
2024-03-26 11:37:42,293 EPOCH 10 done: loss 0.0270 - lr: 0.000000
2024-03-26 11:37:43,246 DEV : loss 0.17998817563056946 - f1-score (micro avg)  0.9326
2024-03-26 11:37:43,555 ----------------------------------------------------------------------------------------------------
2024-03-26 11:37:43,555 Loading model from best epoch ...
2024-03-26 11:37:44,460 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:37:45,303 
Results:
- F-score (micro) 0.9052
- F-score (macro) 0.6892
- Accuracy 0.8279

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9027    0.8722    0.8872       266
 Auslagerung     0.8775    0.8916    0.8845       249
         Ort     0.9779    0.9925    0.9852       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.9059    0.9045    0.9052       649
   macro avg     0.6895    0.6891    0.6892       649
weighted avg     0.9086    0.9045    0.9064       649

2024-03-26 11:37:45,304 ----------------------------------------------------------------------------------------------------