Upload ./training.log with huggingface_hub
Browse files- training.log +245 -0
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-11-16 00:45:31,082 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-11-16 00:45:31,084 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): XLMRobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250003, 1024)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): XLMRobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-23): 24 x XLMRobertaLayer(
|
15 |
+
(attention): XLMRobertaAttention(
|
16 |
+
(self): XLMRobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): XLMRobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): XLMRobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): XLMRobertaOutput(
|
33 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): XLMRobertaPooler(
|
41 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=1024, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-11-16 00:45:31,084 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-11-16 00:45:31,084 MultiCorpus: 30000 train + 10000 dev + 10000 test sentences
|
52 |
+
- ColumnCorpus Corpus: 20000 train + 0 dev + 0 test sentences - /root/.flair/datasets/ner_multi_xtreme/en
|
53 |
+
- ColumnCorpus Corpus: 10000 train + 10000 dev + 10000 test sentences - /root/.flair/datasets/ner_multi_xtreme/ka
|
54 |
+
2023-11-16 00:45:31,084 ----------------------------------------------------------------------------------------------------
|
55 |
+
2023-11-16 00:45:31,084 Train: 30000 sentences
|
56 |
+
2023-11-16 00:45:31,084 (train_with_dev=False, train_with_test=False)
|
57 |
+
2023-11-16 00:45:31,084 ----------------------------------------------------------------------------------------------------
|
58 |
+
2023-11-16 00:45:31,084 Training Params:
|
59 |
+
2023-11-16 00:45:31,084 - learning_rate: "5e-06"
|
60 |
+
2023-11-16 00:45:31,084 - mini_batch_size: "4"
|
61 |
+
2023-11-16 00:45:31,084 - max_epochs: "10"
|
62 |
+
2023-11-16 00:45:31,084 - shuffle: "True"
|
63 |
+
2023-11-16 00:45:31,084 ----------------------------------------------------------------------------------------------------
|
64 |
+
2023-11-16 00:45:31,084 Plugins:
|
65 |
+
2023-11-16 00:45:31,084 - TensorboardLogger
|
66 |
+
2023-11-16 00:45:31,084 - LinearScheduler | warmup_fraction: '0.1'
|
67 |
+
2023-11-16 00:45:31,084 ----------------------------------------------------------------------------------------------------
|
68 |
+
2023-11-16 00:45:31,084 Final evaluation on model from best epoch (best-model.pt)
|
69 |
+
2023-11-16 00:45:31,085 - metric: "('micro avg', 'f1-score')"
|
70 |
+
2023-11-16 00:45:31,085 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-11-16 00:45:31,085 Computation:
|
72 |
+
2023-11-16 00:45:31,085 - compute on device: cuda:0
|
73 |
+
2023-11-16 00:45:31,085 - embedding storage: none
|
74 |
+
2023-11-16 00:45:31,085 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-11-16 00:45:31,085 Model training base path: "autotrain-flair-georgian-ner-xlm_r_large-bs4-e10-lr5e-06-2"
|
76 |
+
2023-11-16 00:45:31,085 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-11-16 00:45:31,085 ----------------------------------------------------------------------------------------------------
|
78 |
+
2023-11-16 00:45:31,085 Logging anything other than scalars to TensorBoard is currently not supported.
|
79 |
+
2023-11-16 00:47:04,086 epoch 1 - iter 750/7500 - loss 3.20421711 - time (sec): 93.00 - samples/sec: 254.76 - lr: 0.000000 - momentum: 0.000000
|
80 |
+
2023-11-16 00:48:36,937 epoch 1 - iter 1500/7500 - loss 2.53046773 - time (sec): 185.85 - samples/sec: 256.83 - lr: 0.000001 - momentum: 0.000000
|
81 |
+
2023-11-16 00:50:07,872 epoch 1 - iter 2250/7500 - loss 2.16462133 - time (sec): 276.79 - samples/sec: 258.95 - lr: 0.000001 - momentum: 0.000000
|
82 |
+
2023-11-16 00:51:39,794 epoch 1 - iter 3000/7500 - loss 1.89258823 - time (sec): 368.71 - samples/sec: 258.86 - lr: 0.000002 - momentum: 0.000000
|
83 |
+
2023-11-16 00:53:11,581 epoch 1 - iter 3750/7500 - loss 1.66150429 - time (sec): 460.49 - samples/sec: 259.63 - lr: 0.000002 - momentum: 0.000000
|
84 |
+
2023-11-16 00:54:42,341 epoch 1 - iter 4500/7500 - loss 1.47974045 - time (sec): 551.25 - samples/sec: 261.00 - lr: 0.000003 - momentum: 0.000000
|
85 |
+
2023-11-16 00:56:14,348 epoch 1 - iter 5250/7500 - loss 1.33779802 - time (sec): 643.26 - samples/sec: 261.74 - lr: 0.000003 - momentum: 0.000000
|
86 |
+
2023-11-16 00:57:44,891 epoch 1 - iter 6000/7500 - loss 1.23224942 - time (sec): 733.80 - samples/sec: 262.47 - lr: 0.000004 - momentum: 0.000000
|
87 |
+
2023-11-16 00:59:17,561 epoch 1 - iter 6750/7500 - loss 1.14528322 - time (sec): 826.47 - samples/sec: 262.22 - lr: 0.000004 - momentum: 0.000000
|
88 |
+
2023-11-16 01:00:50,271 epoch 1 - iter 7500/7500 - loss 1.07465936 - time (sec): 919.18 - samples/sec: 261.97 - lr: 0.000005 - momentum: 0.000000
|
89 |
+
2023-11-16 01:00:50,273 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-11-16 01:00:50,273 EPOCH 1 done: loss 1.0747 - lr: 0.000005
|
91 |
+
2023-11-16 01:01:17,256 DEV : loss 0.2856157124042511 - f1-score (micro avg) 0.8045
|
92 |
+
2023-11-16 01:01:18,998 saving best model
|
93 |
+
2023-11-16 01:01:20,796 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-11-16 01:02:54,269 epoch 2 - iter 750/7500 - loss 0.40158514 - time (sec): 93.47 - samples/sec: 252.67 - lr: 0.000005 - momentum: 0.000000
|
95 |
+
2023-11-16 01:04:26,600 epoch 2 - iter 1500/7500 - loss 0.40578126 - time (sec): 185.80 - samples/sec: 257.91 - lr: 0.000005 - momentum: 0.000000
|
96 |
+
2023-11-16 01:06:01,665 epoch 2 - iter 2250/7500 - loss 0.40182467 - time (sec): 280.87 - samples/sec: 256.06 - lr: 0.000005 - momentum: 0.000000
|
97 |
+
2023-11-16 01:07:35,409 epoch 2 - iter 3000/7500 - loss 0.40425251 - time (sec): 374.61 - samples/sec: 255.46 - lr: 0.000005 - momentum: 0.000000
|
98 |
+
2023-11-16 01:09:06,889 epoch 2 - iter 3750/7500 - loss 0.40579040 - time (sec): 466.09 - samples/sec: 256.59 - lr: 0.000005 - momentum: 0.000000
|
99 |
+
2023-11-16 01:10:37,461 epoch 2 - iter 4500/7500 - loss 0.40296543 - time (sec): 556.66 - samples/sec: 257.85 - lr: 0.000005 - momentum: 0.000000
|
100 |
+
2023-11-16 01:12:10,834 epoch 2 - iter 5250/7500 - loss 0.39886416 - time (sec): 650.03 - samples/sec: 258.59 - lr: 0.000005 - momentum: 0.000000
|
101 |
+
2023-11-16 01:13:43,058 epoch 2 - iter 6000/7500 - loss 0.40163262 - time (sec): 742.26 - samples/sec: 258.99 - lr: 0.000005 - momentum: 0.000000
|
102 |
+
2023-11-16 01:15:15,768 epoch 2 - iter 6750/7500 - loss 0.39984468 - time (sec): 834.97 - samples/sec: 259.04 - lr: 0.000005 - momentum: 0.000000
|
103 |
+
2023-11-16 01:16:48,990 epoch 2 - iter 7500/7500 - loss 0.39673334 - time (sec): 928.19 - samples/sec: 259.43 - lr: 0.000004 - momentum: 0.000000
|
104 |
+
2023-11-16 01:16:48,992 ----------------------------------------------------------------------------------------------------
|
105 |
+
2023-11-16 01:16:48,992 EPOCH 2 done: loss 0.3967 - lr: 0.000004
|
106 |
+
2023-11-16 01:17:16,238 DEV : loss 0.27984410524368286 - f1-score (micro avg) 0.8635
|
107 |
+
2023-11-16 01:17:18,468 saving best model
|
108 |
+
2023-11-16 01:17:21,478 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-11-16 01:18:56,267 epoch 3 - iter 750/7500 - loss 0.34788380 - time (sec): 94.78 - samples/sec: 252.61 - lr: 0.000004 - momentum: 0.000000
|
110 |
+
2023-11-16 01:20:29,227 epoch 3 - iter 1500/7500 - loss 0.35790619 - time (sec): 187.74 - samples/sec: 257.86 - lr: 0.000004 - momentum: 0.000000
|
111 |
+
2023-11-16 01:22:00,989 epoch 3 - iter 2250/7500 - loss 0.36275974 - time (sec): 279.51 - samples/sec: 256.05 - lr: 0.000004 - momentum: 0.000000
|
112 |
+
2023-11-16 01:23:32,112 epoch 3 - iter 3000/7500 - loss 0.35448466 - time (sec): 370.63 - samples/sec: 257.61 - lr: 0.000004 - momentum: 0.000000
|
113 |
+
2023-11-16 01:25:04,514 epoch 3 - iter 3750/7500 - loss 0.35784162 - time (sec): 463.03 - samples/sec: 258.62 - lr: 0.000004 - momentum: 0.000000
|
114 |
+
2023-11-16 01:26:37,957 epoch 3 - iter 4500/7500 - loss 0.35491385 - time (sec): 556.48 - samples/sec: 259.13 - lr: 0.000004 - momentum: 0.000000
|
115 |
+
2023-11-16 01:28:09,894 epoch 3 - iter 5250/7500 - loss 0.35268653 - time (sec): 648.41 - samples/sec: 259.90 - lr: 0.000004 - momentum: 0.000000
|
116 |
+
2023-11-16 01:29:43,647 epoch 3 - iter 6000/7500 - loss 0.35432380 - time (sec): 742.17 - samples/sec: 259.26 - lr: 0.000004 - momentum: 0.000000
|
117 |
+
2023-11-16 01:31:15,583 epoch 3 - iter 6750/7500 - loss 0.35073442 - time (sec): 834.10 - samples/sec: 259.69 - lr: 0.000004 - momentum: 0.000000
|
118 |
+
2023-11-16 01:32:47,991 epoch 3 - iter 7500/7500 - loss 0.34845272 - time (sec): 926.51 - samples/sec: 259.90 - lr: 0.000004 - momentum: 0.000000
|
119 |
+
2023-11-16 01:32:47,993 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-11-16 01:32:47,993 EPOCH 3 done: loss 0.3485 - lr: 0.000004
|
121 |
+
2023-11-16 01:33:14,670 DEV : loss 0.2744104862213135 - f1-score (micro avg) 0.8834
|
122 |
+
2023-11-16 01:33:16,359 saving best model
|
123 |
+
2023-11-16 01:33:18,657 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-11-16 01:34:49,914 epoch 4 - iter 750/7500 - loss 0.29966012 - time (sec): 91.25 - samples/sec: 265.65 - lr: 0.000004 - momentum: 0.000000
|
125 |
+
2023-11-16 01:36:21,479 epoch 4 - iter 1500/7500 - loss 0.29512059 - time (sec): 182.82 - samples/sec: 262.70 - lr: 0.000004 - momentum: 0.000000
|
126 |
+
2023-11-16 01:37:53,047 epoch 4 - iter 2250/7500 - loss 0.29934339 - time (sec): 274.38 - samples/sec: 262.65 - lr: 0.000004 - momentum: 0.000000
|
127 |
+
2023-11-16 01:39:25,499 epoch 4 - iter 3000/7500 - loss 0.29881097 - time (sec): 366.84 - samples/sec: 263.27 - lr: 0.000004 - momentum: 0.000000
|
128 |
+
2023-11-16 01:40:56,808 epoch 4 - iter 3750/7500 - loss 0.29543460 - time (sec): 458.15 - samples/sec: 264.24 - lr: 0.000004 - momentum: 0.000000
|
129 |
+
2023-11-16 01:42:30,166 epoch 4 - iter 4500/7500 - loss 0.29266567 - time (sec): 551.50 - samples/sec: 262.68 - lr: 0.000004 - momentum: 0.000000
|
130 |
+
2023-11-16 01:44:03,529 epoch 4 - iter 5250/7500 - loss 0.29429266 - time (sec): 644.87 - samples/sec: 262.58 - lr: 0.000004 - momentum: 0.000000
|
131 |
+
2023-11-16 01:45:36,284 epoch 4 - iter 6000/7500 - loss 0.29201070 - time (sec): 737.62 - samples/sec: 261.99 - lr: 0.000003 - momentum: 0.000000
|
132 |
+
2023-11-16 01:47:11,437 epoch 4 - iter 6750/7500 - loss 0.29527772 - time (sec): 832.77 - samples/sec: 260.57 - lr: 0.000003 - momentum: 0.000000
|
133 |
+
2023-11-16 01:48:47,245 epoch 4 - iter 7500/7500 - loss 0.29729031 - time (sec): 928.58 - samples/sec: 259.32 - lr: 0.000003 - momentum: 0.000000
|
134 |
+
2023-11-16 01:48:47,248 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-11-16 01:48:47,248 EPOCH 4 done: loss 0.2973 - lr: 0.000003
|
136 |
+
2023-11-16 01:49:14,914 DEV : loss 0.3016064167022705 - f1-score (micro avg) 0.88
|
137 |
+
2023-11-16 01:49:16,910 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-11-16 01:50:49,496 epoch 5 - iter 750/7500 - loss 0.25377931 - time (sec): 92.58 - samples/sec: 262.37 - lr: 0.000003 - momentum: 0.000000
|
139 |
+
2023-11-16 01:52:20,605 epoch 5 - iter 1500/7500 - loss 0.25135538 - time (sec): 183.69 - samples/sec: 265.72 - lr: 0.000003 - momentum: 0.000000
|
140 |
+
2023-11-16 01:53:53,577 epoch 5 - iter 2250/7500 - loss 0.25580791 - time (sec): 276.66 - samples/sec: 262.18 - lr: 0.000003 - momentum: 0.000000
|
141 |
+
2023-11-16 01:55:26,799 epoch 5 - iter 3000/7500 - loss 0.25964203 - time (sec): 369.89 - samples/sec: 260.86 - lr: 0.000003 - momentum: 0.000000
|
142 |
+
2023-11-16 01:57:00,788 epoch 5 - iter 3750/7500 - loss 0.26132921 - time (sec): 463.87 - samples/sec: 259.14 - lr: 0.000003 - momentum: 0.000000
|
143 |
+
2023-11-16 01:58:33,972 epoch 5 - iter 4500/7500 - loss 0.26036055 - time (sec): 557.06 - samples/sec: 258.72 - lr: 0.000003 - momentum: 0.000000
|
144 |
+
2023-11-16 02:00:09,582 epoch 5 - iter 5250/7500 - loss 0.25878497 - time (sec): 652.67 - samples/sec: 257.81 - lr: 0.000003 - momentum: 0.000000
|
145 |
+
2023-11-16 02:01:48,359 epoch 5 - iter 6000/7500 - loss 0.25604978 - time (sec): 751.45 - samples/sec: 256.54 - lr: 0.000003 - momentum: 0.000000
|
146 |
+
2023-11-16 02:03:25,431 epoch 5 - iter 6750/7500 - loss 0.25651438 - time (sec): 848.52 - samples/sec: 255.47 - lr: 0.000003 - momentum: 0.000000
|
147 |
+
2023-11-16 02:04:59,400 epoch 5 - iter 7500/7500 - loss 0.25488422 - time (sec): 942.49 - samples/sec: 255.49 - lr: 0.000003 - momentum: 0.000000
|
148 |
+
2023-11-16 02:04:59,403 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-11-16 02:04:59,403 EPOCH 5 done: loss 0.2549 - lr: 0.000003
|
150 |
+
2023-11-16 02:05:26,452 DEV : loss 0.3108203411102295 - f1-score (micro avg) 0.8923
|
151 |
+
2023-11-16 02:05:28,547 saving best model
|
152 |
+
2023-11-16 02:05:31,087 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-11-16 02:07:03,915 epoch 6 - iter 750/7500 - loss 0.20941918 - time (sec): 92.82 - samples/sec: 258.36 - lr: 0.000003 - momentum: 0.000000
|
154 |
+
2023-11-16 02:08:34,259 epoch 6 - iter 1500/7500 - loss 0.20871668 - time (sec): 183.17 - samples/sec: 261.51 - lr: 0.000003 - momentum: 0.000000
|
155 |
+
2023-11-16 02:10:06,286 epoch 6 - iter 2250/7500 - loss 0.21719166 - time (sec): 275.20 - samples/sec: 261.07 - lr: 0.000003 - momentum: 0.000000
|
156 |
+
2023-11-16 02:11:38,611 epoch 6 - iter 3000/7500 - loss 0.22345226 - time (sec): 367.52 - samples/sec: 260.76 - lr: 0.000003 - momentum: 0.000000
|
157 |
+
2023-11-16 02:13:13,015 epoch 6 - iter 3750/7500 - loss 0.21948790 - time (sec): 461.92 - samples/sec: 260.22 - lr: 0.000003 - momentum: 0.000000
|
158 |
+
2023-11-16 02:14:48,651 epoch 6 - iter 4500/7500 - loss 0.22195698 - time (sec): 557.56 - samples/sec: 257.83 - lr: 0.000002 - momentum: 0.000000
|
159 |
+
2023-11-16 02:16:23,096 epoch 6 - iter 5250/7500 - loss 0.22241666 - time (sec): 652.01 - samples/sec: 257.73 - lr: 0.000002 - momentum: 0.000000
|
160 |
+
2023-11-16 02:17:57,154 epoch 6 - iter 6000/7500 - loss 0.22130923 - time (sec): 746.06 - samples/sec: 258.53 - lr: 0.000002 - momentum: 0.000000
|
161 |
+
2023-11-16 02:19:29,542 epoch 6 - iter 6750/7500 - loss 0.21994780 - time (sec): 838.45 - samples/sec: 258.60 - lr: 0.000002 - momentum: 0.000000
|
162 |
+
2023-11-16 02:21:01,165 epoch 6 - iter 7500/7500 - loss 0.21770578 - time (sec): 930.07 - samples/sec: 258.90 - lr: 0.000002 - momentum: 0.000000
|
163 |
+
2023-11-16 02:21:01,168 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-11-16 02:21:01,168 EPOCH 6 done: loss 0.2177 - lr: 0.000002
|
165 |
+
2023-11-16 02:21:28,850 DEV : loss 0.31180956959724426 - f1-score (micro avg) 0.8955
|
166 |
+
2023-11-16 02:21:31,381 saving best model
|
167 |
+
2023-11-16 02:21:34,381 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-11-16 02:23:08,670 epoch 7 - iter 750/7500 - loss 0.17025570 - time (sec): 94.28 - samples/sec: 253.94 - lr: 0.000002 - momentum: 0.000000
|
169 |
+
2023-11-16 02:24:44,294 epoch 7 - iter 1500/7500 - loss 0.18032455 - time (sec): 189.91 - samples/sec: 253.38 - lr: 0.000002 - momentum: 0.000000
|
170 |
+
2023-11-16 02:26:19,207 epoch 7 - iter 2250/7500 - loss 0.18368583 - time (sec): 284.82 - samples/sec: 253.98 - lr: 0.000002 - momentum: 0.000000
|
171 |
+
2023-11-16 02:27:52,445 epoch 7 - iter 3000/7500 - loss 0.18638293 - time (sec): 378.06 - samples/sec: 254.49 - lr: 0.000002 - momentum: 0.000000
|
172 |
+
2023-11-16 02:29:25,782 epoch 7 - iter 3750/7500 - loss 0.18144838 - time (sec): 471.40 - samples/sec: 255.30 - lr: 0.000002 - momentum: 0.000000
|
173 |
+
2023-11-16 02:30:59,415 epoch 7 - iter 4500/7500 - loss 0.18697815 - time (sec): 565.03 - samples/sec: 255.93 - lr: 0.000002 - momentum: 0.000000
|
174 |
+
2023-11-16 02:32:31,970 epoch 7 - iter 5250/7500 - loss 0.18690520 - time (sec): 657.58 - samples/sec: 256.63 - lr: 0.000002 - momentum: 0.000000
|
175 |
+
2023-11-16 02:34:05,459 epoch 7 - iter 6000/7500 - loss 0.18389577 - time (sec): 751.07 - samples/sec: 256.38 - lr: 0.000002 - momentum: 0.000000
|
176 |
+
2023-11-16 02:35:40,741 epoch 7 - iter 6750/7500 - loss 0.18345948 - time (sec): 846.36 - samples/sec: 255.76 - lr: 0.000002 - momentum: 0.000000
|
177 |
+
2023-11-16 02:37:17,970 epoch 7 - iter 7500/7500 - loss 0.18350743 - time (sec): 943.58 - samples/sec: 255.19 - lr: 0.000002 - momentum: 0.000000
|
178 |
+
2023-11-16 02:37:17,972 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-11-16 02:37:17,972 EPOCH 7 done: loss 0.1835 - lr: 0.000002
|
180 |
+
2023-11-16 02:37:45,548 DEV : loss 0.31052064895629883 - f1-score (micro avg) 0.901
|
181 |
+
2023-11-16 02:37:47,535 saving best model
|
182 |
+
2023-11-16 02:37:49,958 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-11-16 02:39:25,797 epoch 8 - iter 750/7500 - loss 0.14917987 - time (sec): 95.84 - samples/sec: 255.82 - lr: 0.000002 - momentum: 0.000000
|
184 |
+
2023-11-16 02:40:58,825 epoch 8 - iter 1500/7500 - loss 0.16554104 - time (sec): 188.86 - samples/sec: 254.74 - lr: 0.000002 - momentum: 0.000000
|
185 |
+
2023-11-16 02:42:33,026 epoch 8 - iter 2250/7500 - loss 0.16246413 - time (sec): 283.06 - samples/sec: 254.01 - lr: 0.000002 - momentum: 0.000000
|
186 |
+
2023-11-16 02:44:05,013 epoch 8 - iter 3000/7500 - loss 0.15793136 - time (sec): 375.05 - samples/sec: 254.92 - lr: 0.000001 - momentum: 0.000000
|
187 |
+
2023-11-16 02:45:37,970 epoch 8 - iter 3750/7500 - loss 0.15705842 - time (sec): 468.01 - samples/sec: 255.77 - lr: 0.000001 - momentum: 0.000000
|
188 |
+
2023-11-16 02:47:09,872 epoch 8 - iter 4500/7500 - loss 0.15757577 - time (sec): 559.91 - samples/sec: 256.37 - lr: 0.000001 - momentum: 0.000000
|
189 |
+
2023-11-16 02:48:43,951 epoch 8 - iter 5250/7500 - loss 0.15530409 - time (sec): 653.99 - samples/sec: 256.53 - lr: 0.000001 - momentum: 0.000000
|
190 |
+
2023-11-16 02:50:15,610 epoch 8 - iter 6000/7500 - loss 0.15633332 - time (sec): 745.65 - samples/sec: 258.01 - lr: 0.000001 - momentum: 0.000000
|
191 |
+
2023-11-16 02:51:49,707 epoch 8 - iter 6750/7500 - loss 0.15781340 - time (sec): 839.75 - samples/sec: 258.51 - lr: 0.000001 - momentum: 0.000000
|
192 |
+
2023-11-16 02:53:22,758 epoch 8 - iter 7500/7500 - loss 0.15738201 - time (sec): 932.80 - samples/sec: 258.14 - lr: 0.000001 - momentum: 0.000000
|
193 |
+
2023-11-16 02:53:22,761 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-11-16 02:53:22,761 EPOCH 8 done: loss 0.1574 - lr: 0.000001
|
195 |
+
2023-11-16 02:53:49,642 DEV : loss 0.31349387764930725 - f1-score (micro avg) 0.9012
|
196 |
+
2023-11-16 02:53:51,537 saving best model
|
197 |
+
2023-11-16 02:53:53,925 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-11-16 02:55:30,620 epoch 9 - iter 750/7500 - loss 0.12454614 - time (sec): 96.69 - samples/sec: 248.06 - lr: 0.000001 - momentum: 0.000000
|
199 |
+
2023-11-16 02:57:02,449 epoch 9 - iter 1500/7500 - loss 0.12492215 - time (sec): 188.52 - samples/sec: 254.80 - lr: 0.000001 - momentum: 0.000000
|
200 |
+
2023-11-16 02:58:34,812 epoch 9 - iter 2250/7500 - loss 0.13002767 - time (sec): 280.88 - samples/sec: 257.65 - lr: 0.000001 - momentum: 0.000000
|
201 |
+
2023-11-16 03:00:06,592 epoch 9 - iter 3000/7500 - loss 0.12936109 - time (sec): 372.66 - samples/sec: 259.06 - lr: 0.000001 - momentum: 0.000000
|
202 |
+
2023-11-16 03:01:36,302 epoch 9 - iter 3750/7500 - loss 0.12949282 - time (sec): 462.37 - samples/sec: 260.59 - lr: 0.000001 - momentum: 0.000000
|
203 |
+
2023-11-16 03:03:09,938 epoch 9 - iter 4500/7500 - loss 0.13100535 - time (sec): 556.01 - samples/sec: 259.28 - lr: 0.000001 - momentum: 0.000000
|
204 |
+
2023-11-16 03:04:42,142 epoch 9 - iter 5250/7500 - loss 0.13241958 - time (sec): 648.21 - samples/sec: 259.22 - lr: 0.000001 - momentum: 0.000000
|
205 |
+
2023-11-16 03:06:15,744 epoch 9 - iter 6000/7500 - loss 0.13197722 - time (sec): 741.81 - samples/sec: 260.12 - lr: 0.000001 - momentum: 0.000000
|
206 |
+
2023-11-16 03:07:52,365 epoch 9 - iter 6750/7500 - loss 0.13101789 - time (sec): 838.44 - samples/sec: 258.40 - lr: 0.000001 - momentum: 0.000000
|
207 |
+
2023-11-16 03:09:30,882 epoch 9 - iter 7500/7500 - loss 0.13192127 - time (sec): 936.95 - samples/sec: 257.00 - lr: 0.000001 - momentum: 0.000000
|
208 |
+
2023-11-16 03:09:30,885 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-11-16 03:09:30,886 EPOCH 9 done: loss 0.1319 - lr: 0.000001
|
210 |
+
2023-11-16 03:09:58,661 DEV : loss 0.3276961147785187 - f1-score (micro avg) 0.9002
|
211 |
+
2023-11-16 03:10:01,082 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-11-16 03:11:36,851 epoch 10 - iter 750/7500 - loss 0.10811317 - time (sec): 95.77 - samples/sec: 255.65 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-11-16 03:13:11,188 epoch 10 - iter 1500/7500 - loss 0.10879497 - time (sec): 190.10 - samples/sec: 251.97 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-11-16 03:14:44,600 epoch 10 - iter 2250/7500 - loss 0.11179486 - time (sec): 283.52 - samples/sec: 253.42 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-11-16 03:16:16,891 epoch 10 - iter 3000/7500 - loss 0.11110255 - time (sec): 375.81 - samples/sec: 256.07 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-11-16 03:17:51,280 epoch 10 - iter 3750/7500 - loss 0.11617599 - time (sec): 470.20 - samples/sec: 254.90 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-11-16 03:19:22,531 epoch 10 - iter 4500/7500 - loss 0.11661813 - time (sec): 561.45 - samples/sec: 256.54 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-11-16 03:20:53,037 epoch 10 - iter 5250/7500 - loss 0.11803804 - time (sec): 651.95 - samples/sec: 257.89 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-11-16 03:22:24,015 epoch 10 - iter 6000/7500 - loss 0.11722958 - time (sec): 742.93 - samples/sec: 258.60 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-11-16 03:23:55,236 epoch 10 - iter 6750/7500 - loss 0.11710786 - time (sec): 834.15 - samples/sec: 260.07 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-11-16 03:25:24,728 epoch 10 - iter 7500/7500 - loss 0.11716487 - time (sec): 923.64 - samples/sec: 260.70 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-11-16 03:25:24,731 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-11-16 03:25:24,731 EPOCH 10 done: loss 0.1172 - lr: 0.000000
|
224 |
+
2023-11-16 03:25:51,758 DEV : loss 0.32983964681625366 - f1-score (micro avg) 0.9006
|
225 |
+
2023-11-16 03:25:55,590 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-11-16 03:25:55,592 Loading model from best epoch ...
|
227 |
+
2023-11-16 03:26:03,736 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-PER, B-PER, E-PER, I-PER
|
228 |
+
2023-11-16 03:26:31,850
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.9027
|
231 |
+
- F-score (macro) 0.9014
|
232 |
+
- Accuracy 0.8521
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
LOC 0.9036 0.9141 0.9088 5288
|
238 |
+
PER 0.9238 0.9427 0.9332 3962
|
239 |
+
ORG 0.8593 0.8650 0.8622 3807
|
240 |
+
|
241 |
+
micro avg 0.8969 0.9085 0.9027 13057
|
242 |
+
macro avg 0.8956 0.9073 0.9014 13057
|
243 |
+
weighted avg 0.8968 0.9085 0.9026 13057
|
244 |
+
|
245 |
+
2023-11-16 03:26:31,850 ----------------------------------------------------------------------------------------------------
|