File size: 7,368 Bytes
244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 244d337 0be81d1 4c0d940 0be81d1 5fc023f 0be81d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
datasets:
- HuggingFaceH4/ultrachat_200k
- allenai/ultrafeedback_binarized_cleaned
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- Intel/orca_dpo_pairs
- hkust-nlp/deita-10k-v0
- teknium/OpenHermes-2.5
language:
- en
tags:
- causal-lm
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
license: other
---
# `StableLM 2 Chat 1.6B`
## Model Description
`Stable LM 2 Chat 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co./HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
## Usage
`StableLM 2 1.6B Chat` uses the following ChatML format:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-1_6b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-1_6b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM 2 Chat 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [https://huggingface.co./stabilityai/stablelm-2-1_6b](https://huggingface.co./stabilityai/stablelm-2-1_6b)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co./stabilityai/stablelm-2-1_6b-chat/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `[email protected]`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co./datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- hkust-nlp/deita-10k-v0
- teknium/OpenHermes-2.5
2. Preference Datasets:
- allenai/ultrafeedback_binarized_cleaned
- Intel/orca_dpo_pairs
- argilla/dpo-mix-7k
## Performance
### MT-Bench
| Model | Size | MT-Bench |
|-------------------------|------|----------|
| Mistral-7B-Instruct-v0.2| 7B | 7.61 |
| Llama2-Chat | 70B | 6.86 |
| stablelm-zephyr-3b | 3B | 6.64 |
| MPT-30B-Chat | 30B | 6.39 |
| **stablelm-2-1_6b-chat** | **1.6B** | **5.83** |
| stablelm-2-zephyr-1.6b | 1.6B | 5.42 |
| Falcon-40B-Instruct | 40B | 5.17 |
| Qwen-1.8B-Chat | 1.8B | 4.95 |
| dolphin-2.6-phi-2 | 2.7B | 4.93 |
| phi-2 | 2.7B | 4.29 |
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
### OpenLLM Leaderboard
| Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
| microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
| **stabilityai/stablelm-2-1_6b-chat** | 1.6B | 50.80% | 43.94% | 69.22% | 41.59% | 46.52% | 64.56% | 38.96% |
| stabilityai/stablelm-2-zephyr-1_6b | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
| microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
| stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
| mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
| KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
| openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
| iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
| TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
## Use and Limitations
### Intended Use
The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
### Limitations and Bias
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
## How to Cite
```bibtex
@misc{StableLM-2-1.6B,
url={[https://huggingface.co./stabilityai/stablelm-2-1.6b](https://huggingface.co./stabilityai/stablelm-2-1.6b)},
title={Stable LM 2 1.6B},
author={Stability AI Language Team}
}
``` |