Text-to-Image
Diffusers
Safetensors
StableDiffusionPipeline
stable-diffusion
Inference Endpoints
multimodalart HF staff valhalla commited on
Commit
0904434
·
1 Parent(s): 42d246e

Add diffusers examples (#3)

Browse files

- Add diffusers examples (c2126d1346b4e1e863d90396142d087146d7f881)


Co-authored-by: Suraj Patil <[email protected]>

Files changed (1) hide show
  1. README.md +32 -2
README.md CHANGED
@@ -14,7 +14,7 @@ The model is trained from scratch 550k steps at resolution `256x256` on a subset
14
  ![image](https://github.com/Stability-AI/stablediffusion/blob/main/assets/stable-samples/txt2img/merged-0003.png?raw=true)
15
 
16
  - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-base-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt).
17
- - Use it with 🧨 diffusers (_coming soon_)
18
 
19
  ## Model Details
20
  - **Developed by:** Robin Rombach, Patrick Esser
@@ -33,6 +33,36 @@ The model is trained from scratch 550k steps at resolution `256x256` on a subset
33
  year = {2022},
34
  pages = {10684-10695}
35
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  # Uses
38
 
@@ -152,4 +182,4 @@ Based on that information, we estimate the following CO2 emissions using the [Ma
152
  pages = {10684-10695}
153
  }
154
 
155
- *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
 
14
  ![image](https://github.com/Stability-AI/stablediffusion/blob/main/assets/stable-samples/txt2img/merged-0003.png?raw=true)
15
 
16
  - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-base-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt).
17
+ - Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-base#model-details#Examples)
18
 
19
  ## Model Details
20
  - **Developed by:** Robin Rombach, Patrick Esser
 
33
  year = {2022},
34
  pages = {10684-10695}
35
  }
36
+
37
+
38
+ ## Examples
39
+
40
+ Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner.
41
+
42
+ ```bash
43
+ pip install --upgrade git+https://github.com/huggingface/diffusers.git transformers accelerate scipy
44
+ ```
45
+ Running the pipeline (if you don't swap the scheduler it will run with the default PNDM/PLMS scheduler, in this example we are swapping it to EulerDiscreteScheduler):
46
+
47
+ ```python
48
+ from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
49
+
50
+ model_id = "stabilityai/stable-diffusion-2-base"
51
+
52
+ # Use the Euler scheduler here instead
53
+ scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
54
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
55
+ pipe = pipe.to("cuda")
56
+
57
+ prompt = "a photo of an astronaut riding a horse on mars"
58
+ image = pipe(prompt).images[0]
59
+
60
+ image.save("astronaut_rides_horse.png")
61
+ ```
62
+
63
+ **Notes**:
64
+ - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance)
65
+ - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed)
66
 
67
  # Uses
68
 
 
182
  pages = {10684-10695}
183
  }
184
 
185
+ *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*