File size: 1,849 Bytes
a56ca09
882f97e
 
a56ca09
 
 
 
 
 
 
 
 
 
 
 
 
 
882f97e
a56ca09
882f97e
 
 
 
 
a56ca09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882f97e
a56ca09
 
 
 
 
882f97e
 
 
 
 
a56ca09
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Big-Bart-BBC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Big-Bart-BBC

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1339
- Rouge1: 0.2638
- Rouge2: 0.1052
- Rougel: 0.2019
- Rougelsum: 0.202

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 3.001         | 1.0   | 1652 | 2.8616          | 0.2179 | 0.0571 | 0.1565 | 0.1564    |
| 1.7636        | 2.0   | 3304 | 2.7371          | 0.2423 | 0.0772 | 0.1766 | 0.1767    |
| 0.9422        | 3.0   | 4956 | 3.1619          | 0.2463 | 0.0842 | 0.1832 | 0.1832    |
| 0.4259        | 4.0   | 6608 | 3.5730          | 0.2645 | 0.1009 | 0.2001 | 0.2002    |
| 0.1637        | 5.0   | 8260 | 4.1339          | 0.2638 | 0.1052 | 0.2019 | 0.202     |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0