File size: 25,007 Bytes
0981240
d9996cf
 
 
 
a0c2d0e
d9996cf
0981240
a0c2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0981240
a0c2d0e
26645aa
0981240
31a0bd5
d9996cf
31a0bd5
d9996cf
9c0e7df
d9996cf
 
 
 
 
 
 
 
 
0096d97
d9996cf
0096d97
d9996cf
 
 
 
0981240
d9996cf
 
 
0981240
d9996cf
2e207a9
 
0981240
d9996cf
0981240
d9996cf
 
 
 
0981240
d9996cf
0981240
d9996cf
0981240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9996cf
 
0981240
d9996cf
 
 
 
 
 
 
 
 
 
31a0bd5
d9996cf
 
 
 
 
 
 
 
 
 
 
 
 
99cace0
d7bfe10
f68b294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7bfe10
 
 
 
 
 
 
 
 
 
75010bd
 
 
 
 
f68b294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
---
license: other
license_name: qwen
license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
language:
  - en
pipeline_tag: text-generation
base_model:
  - Qwen/Qwen2.5-72B-Instruct
model-index:
  - name: Qwen2.5-95B-Instruct
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 84.31
            name: strict accuracy
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 58.53
            name: normalized accuracy
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.04
            name: exact match
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.21
            name: acc_norm
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.61
            name: acc_norm
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 46.85
            name: accuracy
        source:
          url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
tags:
  - chat
---

# Qwen2.5-95B-Instruct

Qwen2.5-95B-Instruct is a [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co./Qwen/Qwen2.5-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).

The layer ranges chosen for this merge were inspired by a rough estimate of the layer similarity analysis of [ssmits/Falcon2-5.5B-multilingual](https://huggingface.co./ssmits/Falcon2-5.5B-multilingual). Layer similarity analysis involves examining the outputs of different layers in a neural network to determine how similar or different they are. This technique can help identify which layers contribute most significantly to the model's performance. In the context of the Falcon-11B model, layer similarity analysis across multiple languages revealed that the first half of the layers were more important for maintaining performance. Additionally, this analysis can be used to more rigidly slice and add extra layers for optimal Next Token Prediction, allowing for possibly a model architecture that's more creative and powerful.

- [alpindale/goliath-120b](https://huggingface.co./alpindale/goliath-120b)
- [cognitivecomputations/MegaDolphin-120b](https://huggingface.co./cognitivecomputations/MegaDolphin-120b)
- [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co./mlabonne/Meta-Llama-3-120B-Instruct)

Special thanks to [Eric Hartford](https://huggingface.co./ehartford) for both inspiring and evaluating the original model, to [Charles Goddard](https://huggingface.co./chargoddard) for creating MergeKit, and to [Mathieu Labonne](https://huggingface.co./mlabonne) for creating the Meta-Llama-3-120B-Instruct model that served as the main inspiration for this merge.

## πŸ” Applications

This model is probably good for creative writing tasks. It uses the Qwen chat template with a default context window of 128K.

The model could be quite creative and maybe even better than the 72B model at some tasks.

## ⚑ Quantized models

To be quantized.

* **GGUF**: [Link to GGUF model]
* **EXL2**: [Link to EXL2 model]
* **mlx**: [Link to mlx model]

## πŸ† Evaluation
This model has yet to be thoroughly evaluated. It is expected to excel in creative writing and more but may have limitations in other tasks.
Use it with caution and don't expect it to outperform state-of-the-art models outside of specific creative use cases.

Once the model is created and tested, this section will be updated with:

* Links to evaluation threads on social media platforms
* Examples of the model's performance in creative writing tasks
* Comparisons with other large language models in various applications
* Community feedback and use cases

We encourage users to share their experiences and evaluations to help build a comprehensive understanding of the model's capabilities and limitations.

## 🧩 Configuration

```yaml
slices:
- sources:
  - layer_range: [0, 10]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [5, 15]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [10, 20]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [15, 25]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [20, 30]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [25, 80]
    model: Qwen/Qwen2.5-72B-Instruct
dtype: bfloat16
merge_method: passthrough
```

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ssmits/Qwen2.5-95B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## πŸ† Evaluation

Initial benchmarks show interesting performance characteristics compared to the 72B model:

### Strengths
The 95B model shows notable improvements in:

1. **Mathematical Reasoning**
- Up to 5.83x improvement in algebra tasks
- 3.33x improvement in pre-algebra
- Consistent gains across geometry, number theory, and probability tasks
- Overall stronger performance in complex mathematical reasoning

2. **Spatial & Object Understanding**
- 11% improvement in object placement tasks
- 7% better at tabular data interpretation
- Enhanced performance in logical deduction with multiple objects

3. **Complex Language Tasks**
- 4% improvement in disambiguation tasks
- 2% better at movie recommendations
- Slight improvements in hyperbaton (complex word order) tasks

4. **Creative & Analytical Reasoning**
- 10% improvement in murder mystery solving
- Better performance in tasks requiring creative problem-solving

### Areas for Consideration
While the model shows improvements in specific areas, users should note that the 72B model still performs better in many general language and reasoning tasks. The 95B version appears to excel particularly in mathematical and spatial reasoning while maintaining comparable performance in other areas.

### [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_ssmits__Qwen2.5-95B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |37.43|
|IFEval (0-Shot)    |84.31|
|BBH (3-Shot)       |58.53|
|MATH Lvl 5 (4-Shot)| 6.04|
|GPQA (0-shot)      |15.21|
|MuSR (0-shot)      |13.61|
|MMLU-PRO (5-shot)  |46.85|


| Key                                                                       |   72b Result |   95b Result |   Difference | Which is Higher   | Multiplier   |
|:--------------------------------------------------------------------------|-------------:|-------------:|-------------:|:------------------|:-------------|
| leaderboard_musr.acc_norm,none                                            |        0.419 |        0.427 |        0.008 | 95b               | 1.02        |
| leaderboard_bbh_sports_understanding.acc_norm,none                        |        0.892 |        0.876 |       -0.016 | 72b               | 0.98        |
| leaderboard_bbh_logical_deduction_three_objects.acc_norm,none             |        0.94  |        0.928 |       -0.012 | 72b               | 0.99        |
| leaderboard_math_geometry_hard.exact_match,none                           |        0     |        0.008 |        0.008 | 95b               | 0.00        |
| leaderboard_gpqa.acc_norm,none                                            |        0.375 |        0.364 |       -0.011 | 72b               | 0.97        |
| leaderboard_math_hard.exact_match,none                                    |        0.012 |        0.06  |        0.048 | 95b               | 5.00        |
| leaderboard.exact_match,none                                              |        0.012 |        0.06  |        0.048 | 95b               | 5.00        |
| leaderboard.prompt_level_loose_acc,none                                   |        0.861 |        0.839 |       -0.022 | 72b               | 0.97        |
| leaderboard.prompt_level_strict_acc,none                                  |        0.839 |        0.813 |       -0.026 | 72b               | 0.97        |
| leaderboard.inst_level_loose_acc,none                                     |        0.904 |        0.891 |       -0.013 | 72b               | 0.99        |
| leaderboard.acc_norm,none                                                 |        0.641 |        0.622 |       -0.020 | 72b               | 0.97        |
| leaderboard.inst_level_strict_acc,none                                    |        0.888 |        0.873 |       -0.016 | 72b               | 0.98        |
| leaderboard.acc,none                                                      |        0.563 |        0.522 |       -0.041 | 72b               | 0.93        |
| leaderboard_bbh_causal_judgement.acc_norm,none                            |        0.668 |        0.663 |       -0.005 | 72b               | 0.99        |
| leaderboard_bbh_salient_translation_error_detection.acc_norm,none         |        0.668 |        0.588 |       -0.080 | 72b               | 0.88        |
| leaderboard_gpqa_extended.acc_norm,none                                   |        0.372 |        0.364 |       -0.007 | 72b               | 0.98        |
| leaderboard_math_prealgebra_hard.exact_match,none                         |        0.047 |        0.155 |        0.109 | 95b               | 3.33        |
| leaderboard_math_algebra_hard.exact_match,none                            |        0.02  |        0.114 |        0.094 | 95b               | 5.83        |
| leaderboard_bbh_boolean_expressions.acc_norm,none                         |        0.936 |        0.92  |       -0.016 | 72b               | 0.98        |
| leaderboard_math_num_theory_hard.exact_match,none                         |        0     |        0.058 |        0.058 | 95b               | 0.00        |
| leaderboard_bbh_movie_recommendation.acc_norm,none                        |        0.768 |        0.78  |        0.012 | 95b               | 1.02        |
| leaderboard_math_counting_and_prob_hard.exact_match,none                  |        0     |        0.024 |        0.024 | 95b               | 0.00        |
| leaderboard_math_intermediate_algebra_hard.exact_match,none               |        0     |        0.004 |        0.004 | 95b               | 0.00        |
| leaderboard_ifeval.prompt_level_strict_acc,none                           |        0.839 |        0.813 |       -0.026 | 72b               | 0.97        |
| leaderboard_ifeval.inst_level_strict_acc,none                             |        0.888 |        0.873 |       -0.016 | 72b               | 0.98        |
| leaderboard_ifeval.inst_level_loose_acc,none                              |        0.904 |        0.891 |       -0.013 | 72b               | 0.99        |
| leaderboard_ifeval.prompt_level_loose_acc,none                            |        0.861 |        0.839 |       -0.022 | 72b               | 0.97        |
| leaderboard_bbh_snarks.acc_norm,none                                      |        0.927 |        0.904 |       -0.022 | 72b               | 0.98        |
| leaderboard_bbh_web_of_lies.acc_norm,none                                 |        0.676 |        0.616 |       -0.060 | 72b               | 0.91        |
| leaderboard_bbh_penguins_in_a_table.acc_norm,none                         |        0.719 |        0.767 |        0.048 | 95b               | 1.07        |
| leaderboard_bbh_hyperbaton.acc_norm,none                                  |        0.892 |        0.9   |        0.008 | 95b               | 1.01        |
| leaderboard_bbh_object_counting.acc_norm,none                             |        0.612 |        0.544 |       -0.068 | 72b               | 0.89        |
| leaderboard_musr_object_placements.acc_norm,none                          |        0.258 |        0.285 |        0.027 | 95b               | 1.11        |
| leaderboard_bbh_logical_deduction_five_objects.acc_norm,none              |        0.704 |        0.592 |       -0.112 | 72b               | 0.84        |
| leaderboard_musr_team_allocation.acc_norm,none                            |        0.456 |        0.396 |       -0.060 | 72b               | 0.87        |
| leaderboard_bbh_navigate.acc_norm,none                                    |        0.832 |        0.788 |       -0.044 | 72b               | 0.95        |
| leaderboard_bbh_tracking_shuffled_objects_seven_objects.acc_norm,none     |        0.34  |        0.304 |       -0.036 | 72b               | 0.89        |
| leaderboard_bbh_formal_fallacies.acc_norm,none                            |        0.776 |        0.756 |       -0.020 | 72b               | 0.97        |
| all.leaderboard_musr.acc_norm,none                                        |        0.419 |        0.427 |        0.008 | 95b               | 1.02        |
| all.leaderboard_bbh_sports_understanding.acc_norm,none                    |        0.892 |        0.876 |       -0.016 | 72b               | 0.98        |
| all.leaderboard_bbh_logical_deduction_three_objects.acc_norm,none         |        0.94  |        0.928 |       -0.012 | 72b               | 0.99        |
| all.leaderboard_math_geometry_hard.exact_match,none                       |        0     |        0.008 |        0.008 | 95b               | 0.00        |
| all.leaderboard_gpqa.acc_norm,none                                        |        0.375 |        0.364 |       -0.011 | 72b               | 0.97        |
| all.leaderboard_math_hard.exact_match,none                                |        0.012 |        0.06  |        0.048 | 95b               | 5.00        |
| all.leaderboard.exact_match,none                                          |        0.012 |        0.06  |        0.048 | 95b               | 5.00        |
| all.leaderboard.prompt_level_loose_acc,none                               |        0.861 |        0.839 |       -0.022 | 72b               | 0.97        |
| all.leaderboard.prompt_level_strict_acc,none                              |        0.839 |        0.813 |       -0.026 | 72b               | 0.97        |
| all.leaderboard.inst_level_loose_acc,none                                 |        0.904 |        0.891 |       -0.013 | 72b               | 0.99        |
| all.leaderboard.acc_norm,none                                             |        0.641 |        0.622 |       -0.020 | 72b               | 0.97        |
| all.leaderboard.inst_level_strict_acc,none                                |        0.888 |        0.873 |       -0.016 | 72b               | 0.98        |
| all.leaderboard.acc,none                                                  |        0.563 |        0.522 |       -0.041 | 72b               | 0.93        |
| all.leaderboard_bbh_causal_judgement.acc_norm,none                        |        0.668 |        0.663 |       -0.005 | 72b               | 0.99        |
| all.leaderboard_bbh_salient_translation_error_detection.acc_norm,none     |        0.668 |        0.588 |       -0.080 | 72b               | 0.88        |
| all.leaderboard_gpqa_extended.acc_norm,none                               |        0.372 |        0.364 |       -0.007 | 72b               | 0.98        |
| all.leaderboard_math_prealgebra_hard.exact_match,none                     |        0.047 |        0.155 |        0.109 | 95b               | 3.33        |
| all.leaderboard_math_algebra_hard.exact_match,none                        |        0.02  |        0.114 |        0.094 | 95b               | 5.83        |
| all.leaderboard_bbh_boolean_expressions.acc_norm,none                     |        0.936 |        0.92  |       -0.016 | 72b               | 0.98        |
| all.leaderboard_math_num_theory_hard.exact_match,none                     |        0     |        0.058 |        0.058 | 95b               | 0.00        |
| all.leaderboard_bbh_movie_recommendation.acc_norm,none                    |        0.768 |        0.78  |        0.012 | 95b               | 1.02        |
| all.leaderboard_math_counting_and_prob_hard.exact_match,none              |        0     |        0.024 |        0.024 | 95b               | 0.00        |
| all.leaderboard_math_intermediate_algebra_hard.exact_match,none           |        0     |        0.004 |        0.004 | 95b               | 0.00        |
| all.leaderboard_ifeval.prompt_level_strict_acc,none                       |        0.839 |        0.813 |       -0.026 | 72b               | 0.97        |
| all.leaderboard_ifeval.inst_level_strict_acc,none                         |        0.888 |        0.873 |       -0.016 | 72b               | 0.98        |
| all.leaderboard_ifeval.inst_level_loose_acc,none                          |        0.904 |        0.891 |       -0.013 | 72b               | 0.99        |
| all.leaderboard_ifeval.prompt_level_loose_acc,none                        |        0.861 |        0.839 |       -0.022 | 72b               | 0.97        |
| all.leaderboard_bbh_snarks.acc_norm,none                                  |        0.927 |        0.904 |       -0.022 | 72b               | 0.98        |
| all.leaderboard_bbh_web_of_lies.acc_norm,none                             |        0.676 |        0.616 |       -0.060 | 72b               | 0.91        |
| all.leaderboard_bbh_penguins_in_a_table.acc_norm,none                     |        0.719 |        0.767 |        0.048 | 95b               | 1.07        |
| all.leaderboard_bbh_hyperbaton.acc_norm,none                              |        0.892 |        0.9   |        0.008 | 95b               | 1.01        |
| all.leaderboard_bbh_object_counting.acc_norm,none                         |        0.612 |        0.544 |       -0.068 | 72b               | 0.89        |
| all.leaderboard_musr_object_placements.acc_norm,none                      |        0.258 |        0.285 |        0.027 | 95b               | 1.11        |
| all.leaderboard_bbh_logical_deduction_five_objects.acc_norm,none          |        0.704 |        0.592 |       -0.112 | 72b               | 0.84        |
| all.leaderboard_musr_team_allocation.acc_norm,none                        |        0.456 |        0.396 |       -0.060 | 72b               | 0.87        |
| all.leaderboard_bbh_navigate.acc_norm,none                                |        0.832 |        0.788 |       -0.044 | 72b               | 0.95        |
| all.leaderboard_bbh_tracking_shuffled_objects_seven_objects.acc_norm,none |        0.34  |        0.304 |       -0.036 | 72b               | 0.89        |
| all.leaderboard_bbh_formal_fallacies.acc_norm,none                        |        0.776 |        0.756 |       -0.020 | 72b               | 0.97        |
| all.leaderboard_gpqa_main.acc_norm,none                                   |        0.375 |        0.355 |       -0.020 | 72b               | 0.95        |
| all.leaderboard_bbh_disambiguation_qa.acc_norm,none                       |        0.744 |        0.772 |        0.028 | 95b               | 1.04        |
| all.leaderboard_bbh_tracking_shuffled_objects_five_objects.acc_norm,none  |        0.32  |        0.284 |       -0.036 | 72b               | 0.89        |
| all.leaderboard_bbh_date_understanding.acc_norm,none                      |        0.784 |        0.764 |       -0.020 | 72b               | 0.97        |
| all.leaderboard_bbh_geometric_shapes.acc_norm,none                        |        0.464 |        0.412 |       -0.052 | 72b               | 0.89        |
| all.leaderboard_bbh_reasoning_about_colored_objects.acc_norm,none         |        0.864 |        0.84  |       -0.024 | 72b               | 0.97        |
| all.leaderboard_musr_murder_mysteries.acc_norm,none                       |        0.548 |        0.604 |        0.056 | 95b               | 1.10        |
| all.leaderboard_bbh_ruin_names.acc_norm,none                              |        0.888 |        0.86  |       -0.028 | 72b               | 0.97        |
| all.leaderboard_bbh_logical_deduction_seven_objects.acc_norm,none         |        0.644 |        0.664 |        0.020 | 95b               | 1.03        |
| all.leaderboard_bbh.acc_norm,none                                         |        0.726 |        0.701 |       -0.025 | 72b               | 0.97        |
| all.leaderboard_bbh_temporal_sequences.acc_norm,none                      |        0.996 |        0.968 |       -0.028 | 72b               | 0.97        |
| all.leaderboard_mmlu_pro.acc,none                                         |        0.563 |        0.522 |       -0.041 | 72b               | 0.93        |
| leaderboard_gpqa_main.acc_norm,none                                       |        0.375 |        0.355 |       -0.020 | 72b               | 0.95        |
| leaderboard_bbh_disambiguation_qa.acc_norm,none                           |        0.744 |        0.772 |        0.028 | 95b               | 1.04        |
| leaderboard_bbh_tracking_shuffled_objects_five_objects.acc_norm,none      |        0.32  |        0.284 |       -0.036 | 72b               | 0.89        |
| leaderboard_bbh_date_understanding.acc_norm,none                          |        0.784 |        0.764 |       -0.020 | 72b               | 0.97        |
| leaderboard_bbh_geometric_shapes.acc_norm,none                            |        0.464 |        0.412 |       -0.052 | 72b               | 0.89        |
| leaderboard_bbh_reasoning_about_colored_objects.acc_norm,none             |        0.864 |        0.84  |       -0.024 | 72b               | 0.97        |
| leaderboard_musr_murder_mysteries.acc_norm,none                           |        0.548 |        0.604 |        0.056 | 95b               | 1.10        |
| leaderboard_bbh_ruin_names.acc_norm,none                                  |        0.888 |        0.86  |       -0.028 | 72b               | 0.97        |
| leaderboard_bbh_logical_deduction_seven_objects.acc_norm,none             |        0.644 |        0.664 |        0.020 | 95b               | 1.03        |
| leaderboard_bbh.acc_norm,none                                             |        0.726 |        0.701 |       -0.025 | 72b               | 0.97        |
| leaderboard_bbh_temporal_sequences.acc_norm,none                          |        0.996 |        0.968 |       -0.028 | 72b               | 0.97        |
| leaderboard_mmlu_pro.acc,none                                             |        0.563 |        0.522 |       -0.041 | 72b               | 0.93        |