--- license: other base_model: sayeed99/segformer-b3-fashion tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b3-fashion-finetuned-polo-segments-v1.3 results: [] --- # segformer-b3-fashion-finetuned-polo-segments-v1.3 This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co./sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.0429 - Mean Iou: 0.9091 - Mean Accuracy: 0.9403 - Overall Accuracy: 0.9851 - Accuracy Unlabeled: nan - Accuracy Collar: 0.9095 - Accuracy Polo: 0.9879 - Accuracy Lines-cuff: 0.8355 - Accuracy Lines-chest: 0.9287 - Accuracy Human: 0.9883 - Accuracy Background: 0.9918 - Accuracy Tape: nan - Iou Unlabeled: nan - Iou Collar: 0.8597 - Iou Polo: 0.9688 - Iou Lines-cuff: 0.7831 - Iou Lines-chest: 0.8815 - Iou Human: 0.9746 - Iou Background: 0.9872 - Iou Tape: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:| | 0.2226 | 2.5 | 20 | 0.0915 | 0.7423 | 0.7696 | 0.9768 | nan | 0.8423 | 0.9889 | 0.0156 | 0.8004 | 0.9801 | 0.9903 | nan | nan | 0.8056 | 0.9535 | 0.0156 | 0.7379 | 0.9604 | 0.9808 | nan | | 0.0879 | 5.0 | 40 | 0.0644 | 0.8691 | 0.8908 | 0.9806 | nan | 0.8701 | 0.9901 | 0.7111 | 0.7998 | 0.9908 | 0.9829 | nan | nan | 0.8372 | 0.9618 | 0.6922 | 0.7759 | 0.9674 | 0.9801 | nan | | 0.0599 | 7.5 | 60 | 0.0525 | 0.8927 | 0.9223 | 0.9838 | nan | 0.9040 | 0.9855 | 0.7850 | 0.8792 | 0.9893 | 0.9911 | nan | nan | 0.8543 | 0.9668 | 0.7381 | 0.8389 | 0.9725 | 0.9855 | nan | | 0.0517 | 10.0 | 80 | 0.0502 | 0.9011 | 0.9358 | 0.9834 | nan | 0.9092 | 0.9874 | 0.8282 | 0.9140 | 0.9884 | 0.9873 | nan | nan | 0.8556 | 0.9661 | 0.7672 | 0.8625 | 0.9710 | 0.9843 | nan | | 0.0494 | 12.5 | 100 | 0.0479 | 0.9039 | 0.9372 | 0.9837 | nan | 0.9074 | 0.9885 | 0.8218 | 0.9300 | 0.9865 | 0.9892 | nan | nan | 0.8575 | 0.9655 | 0.7714 | 0.8721 | 0.9713 | 0.9857 | nan | | 0.0507 | 15.0 | 120 | 0.0451 | 0.9082 | 0.9415 | 0.9844 | nan | 0.9126 | 0.9875 | 0.8438 | 0.9271 | 0.9869 | 0.9910 | nan | nan | 0.8592 | 0.9669 | 0.7864 | 0.8774 | 0.9728 | 0.9867 | nan | | 0.0382 | 17.5 | 140 | 0.0460 | 0.9074 | 0.9382 | 0.9840 | nan | 0.9056 | 0.9897 | 0.8399 | 0.9181 | 0.9831 | 0.9930 | nan | nan | 0.8585 | 0.9651 | 0.7862 | 0.8760 | 0.9717 | 0.9870 | nan | | 0.0365 | 20.0 | 160 | 0.0448 | 0.9104 | 0.9423 | 0.9846 | nan | 0.9118 | 0.9869 | 0.8552 | 0.9210 | 0.9904 | 0.9887 | nan | nan | 0.8581 | 0.9686 | 0.7969 | 0.8793 | 0.9736 | 0.9857 | nan | | 0.0437 | 22.5 | 180 | 0.0435 | 0.9084 | 0.9397 | 0.9849 | nan | 0.9087 | 0.9881 | 0.8299 | 0.9323 | 0.9888 | 0.9907 | nan | nan | 0.8595 | 0.9686 | 0.7788 | 0.8824 | 0.9742 | 0.9869 | nan | | 0.0462 | 25.0 | 200 | 0.0433 | 0.9077 | 0.9378 | 0.9850 | nan | 0.9076 | 0.9881 | 0.8308 | 0.9202 | 0.9886 | 0.9915 | nan | nan | 0.8597 | 0.9685 | 0.7789 | 0.8776 | 0.9743 | 0.9871 | nan | | 0.0569 | 27.5 | 220 | 0.0428 | 0.9089 | 0.9396 | 0.9851 | nan | 0.9108 | 0.9879 | 0.8349 | 0.9241 | 0.9883 | 0.9917 | nan | nan | 0.8599 | 0.9688 | 0.7822 | 0.8808 | 0.9746 | 0.9872 | nan | | 0.0357 | 30.0 | 240 | 0.0429 | 0.9091 | 0.9403 | 0.9851 | nan | 0.9095 | 0.9879 | 0.8355 | 0.9287 | 0.9883 | 0.9918 | nan | nan | 0.8597 | 0.9688 | 0.7831 | 0.8815 | 0.9746 | 0.9872 | nan | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1