--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: T5_wmt14_En_Fr_1million results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 config: fr-en split: validation args: fr-en metrics: - name: Bleu type: bleu value: 8.7934 --- # T5_wmt14_En_Fr_1million This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co./google-t5/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 1.3618 - Bleu: 8.7934 - Gen Len: 17.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 60 - eval_batch_size: 60 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.0796 | 1.0 | 1667 | 1.1872 | 9.2959 | 18.0253 | | 1.01 | 2.0 | 3334 | 1.2029 | 9.1594 | 18.0187 | | 0.9686 | 3.0 | 5001 | 1.2114 | 9.2836 | 18.0123 | | 0.9366 | 4.0 | 6668 | 1.2261 | 9.18 | 17.995 | | 0.8999 | 5.0 | 8335 | 1.2319 | 9.2754 | 17.9793 | | 0.8769 | 6.0 | 10002 | 1.2413 | 9.1705 | 18.026 | | 0.8536 | 7.0 | 11669 | 1.2502 | 9.036 | 17.9987 | | 0.8273 | 8.0 | 13336 | 1.2633 | 9.2003 | 18.006 | | 0.8125 | 9.0 | 15003 | 1.2740 | 9.0991 | 18.009 | | 0.7905 | 10.0 | 16670 | 1.2835 | 8.9005 | 18.007 | | 0.774 | 11.0 | 18337 | 1.2943 | 9.0676 | 17.9967 | | 0.76 | 12.0 | 20004 | 1.3023 | 9.0644 | 18.0227 | | 0.7358 | 13.0 | 21671 | 1.3125 | 8.9858 | 18.0027 | | 0.7238 | 14.0 | 23338 | 1.3204 | 9.0178 | 18.0073 | | 0.7143 | 15.0 | 25005 | 1.3317 | 8.9826 | 18.015 | | 0.6988 | 16.0 | 26672 | 1.3402 | 8.9224 | 18.0073 | | 0.6829 | 17.0 | 28339 | 1.3500 | 8.9307 | 17.996 | | 0.6776 | 18.0 | 30006 | 1.3517 | 8.8798 | 17.9987 | | 0.6695 | 19.0 | 31673 | 1.3585 | 8.895 | 17.9967 | | 0.6637 | 20.0 | 33340 | 1.3618 | 8.7934 | 17.9953 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.12.1 - Datasets 2.18.0 - Tokenizers 0.13.2