--- base_model: intfloat/multilingual-e5-small datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:333 - loss:ContrastiveLoss widget: - source_sentence: What is the capital of Canada? sentences: - Main ingredient in guacamole - Prime Minister of the United Kingdom - What is the capital of Australia? - source_sentence: What is the freezing point of water? sentences: - Paracetamol side effects - Temperature at which water freezes - Who discovered electricity? - source_sentence: Who invented the telephone? sentences: - Positive effects of exercise - Current population of Japan - Who created the telephone? - source_sentence: Who discovered gravity? sentences: - Steps to cook pasta - Who found out about gravity? - How to reset a password - source_sentence: What is the capital of Italy? sentences: - What is water's chemical formula? - Italy's capital city - I need help with my homework model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-small results: - task: type: binary-classification name: Binary Classification dataset: name: pair class dev type: pair-class-dev metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8237255811691284 name: Cosine Accuracy Threshold - type: cosine_f1 value: 1.0 name: Cosine F1 - type: cosine_f1_threshold value: 0.8237255811691284 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: dot_accuracy value: 1.0 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.8237255215644836 name: Dot Accuracy Threshold - type: dot_f1 value: 1.0 name: Dot F1 - type: dot_f1_threshold value: 0.8237255215644836 name: Dot F1 Threshold - type: dot_precision value: 1.0 name: Dot Precision - type: dot_recall value: 1.0 name: Dot Recall - type: dot_ap value: 1.0 name: Dot Ap - type: manhattan_accuracy value: 0.972972972972973 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 7.9234113693237305 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.9795918367346939 name: Manhattan F1 - type: manhattan_f1_threshold value: 9.902971267700195 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.96 name: Manhattan Precision - type: manhattan_recall value: 1.0 name: Manhattan Recall - type: manhattan_ap value: 0.9983333333333333 name: Manhattan Ap - type: euclidean_accuracy value: 1.0 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.5937579870223999 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 1.0 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.5937579870223999 name: Euclidean F1 Threshold - type: euclidean_precision value: 1.0 name: Euclidean Precision - type: euclidean_recall value: 1.0 name: Euclidean Recall - type: euclidean_ap value: 1.0 name: Euclidean Ap - type: max_accuracy value: 1.0 name: Max Accuracy - type: max_accuracy_threshold value: 7.9234113693237305 name: Max Accuracy Threshold - type: max_f1 value: 1.0 name: Max F1 - type: max_f1_threshold value: 9.902971267700195 name: Max F1 Threshold - type: max_precision value: 1.0 name: Max Precision - type: max_recall value: 1.0 name: Max Recall - type: max_ap value: 1.0 name: Max Ap - task: type: binary-classification name: Binary Classification dataset: name: pair class test type: pair-class-test metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8052735328674316 name: Cosine Accuracy Threshold - type: cosine_f1 value: 1.0 name: Cosine F1 - type: cosine_f1_threshold value: 0.8052735328674316 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: dot_accuracy value: 1.0 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.8052735328674316 name: Dot Accuracy Threshold - type: dot_f1 value: 1.0 name: Dot F1 - type: dot_f1_threshold value: 0.8052735328674316 name: Dot F1 Threshold - type: dot_precision value: 1.0 name: Dot Precision - type: dot_recall value: 1.0 name: Dot Recall - type: dot_ap value: 1.0 name: Dot Ap - type: manhattan_accuracy value: 1.0 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 9.779541969299316 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 1.0 name: Manhattan F1 - type: manhattan_f1_threshold value: 9.779541969299316 name: Manhattan F1 Threshold - type: manhattan_precision value: 1.0 name: Manhattan Precision - type: manhattan_recall value: 1.0 name: Manhattan Recall - type: manhattan_ap value: 1.0 name: Manhattan Ap - type: euclidean_accuracy value: 1.0 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.6235698461532593 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 1.0 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.6235698461532593 name: Euclidean F1 Threshold - type: euclidean_precision value: 1.0 name: Euclidean Precision - type: euclidean_recall value: 1.0 name: Euclidean Recall - type: euclidean_ap value: 1.0 name: Euclidean Ap - type: max_accuracy value: 1.0 name: Max Accuracy - type: max_accuracy_threshold value: 9.779541969299316 name: Max Accuracy Threshold - type: max_f1 value: 1.0 name: Max F1 - type: max_f1_threshold value: 9.779541969299316 name: Max F1 Threshold - type: max_precision value: 1.0 name: Max Precision - type: max_recall value: 1.0 name: Max Recall - type: max_ap value: 1.0 name: Max Ap --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("srikarvar/multilingual-e5-small-cogcache-contrastive") # Run inference sentences = [ 'What is the capital of Italy?', "Italy's capital city", 'I need help with my homework', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `pair-class-dev` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:--------| | cosine_accuracy | 1.0 | | cosine_accuracy_threshold | 0.8237 | | cosine_f1 | 1.0 | | cosine_f1_threshold | 0.8237 | | cosine_precision | 1.0 | | cosine_recall | 1.0 | | cosine_ap | 1.0 | | dot_accuracy | 1.0 | | dot_accuracy_threshold | 0.8237 | | dot_f1 | 1.0 | | dot_f1_threshold | 0.8237 | | dot_precision | 1.0 | | dot_recall | 1.0 | | dot_ap | 1.0 | | manhattan_accuracy | 0.973 | | manhattan_accuracy_threshold | 7.9234 | | manhattan_f1 | 0.9796 | | manhattan_f1_threshold | 9.903 | | manhattan_precision | 0.96 | | manhattan_recall | 1.0 | | manhattan_ap | 0.9983 | | euclidean_accuracy | 1.0 | | euclidean_accuracy_threshold | 0.5938 | | euclidean_f1 | 1.0 | | euclidean_f1_threshold | 0.5938 | | euclidean_precision | 1.0 | | euclidean_recall | 1.0 | | euclidean_ap | 1.0 | | max_accuracy | 1.0 | | max_accuracy_threshold | 7.9234 | | max_f1 | 1.0 | | max_f1_threshold | 9.903 | | max_precision | 1.0 | | max_recall | 1.0 | | **max_ap** | **1.0** | #### Binary Classification * Dataset: `pair-class-test` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:--------| | cosine_accuracy | 1.0 | | cosine_accuracy_threshold | 0.8053 | | cosine_f1 | 1.0 | | cosine_f1_threshold | 0.8053 | | cosine_precision | 1.0 | | cosine_recall | 1.0 | | cosine_ap | 1.0 | | dot_accuracy | 1.0 | | dot_accuracy_threshold | 0.8053 | | dot_f1 | 1.0 | | dot_f1_threshold | 0.8053 | | dot_precision | 1.0 | | dot_recall | 1.0 | | dot_ap | 1.0 | | manhattan_accuracy | 1.0 | | manhattan_accuracy_threshold | 9.7795 | | manhattan_f1 | 1.0 | | manhattan_f1_threshold | 9.7795 | | manhattan_precision | 1.0 | | manhattan_recall | 1.0 | | manhattan_ap | 1.0 | | euclidean_accuracy | 1.0 | | euclidean_accuracy_threshold | 0.6236 | | euclidean_f1 | 1.0 | | euclidean_f1_threshold | 0.6236 | | euclidean_precision | 1.0 | | euclidean_recall | 1.0 | | euclidean_ap | 1.0 | | max_accuracy | 1.0 | | max_accuracy_threshold | 9.7795 | | max_f1 | 1.0 | | max_f1_threshold | 9.7795 | | max_precision | 1.0 | | max_recall | 1.0 | | **max_ap** | **1.0** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 333 training samples * Columns: sentence1, label, and sentence2 * Approximate statistics based on the first 1000 samples: | | sentence1 | label | sentence2 | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | int | string | | details | | | | * Samples: | sentence1 | label | sentence2 | |:------------------------------------------------|:---------------|:---------------------------------------------------| | How to improve my credit score? | 1 | Improving my credit score tips | | How does photosynthesis work? | 0 | What are the steps of photosynthesis? | | What is the population of Germany? | 0 | How many people live in Berlin? | * Loss: [ContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 37 evaluation samples * Columns: sentence1, label, and sentence2 * Approximate statistics based on the first 1000 samples: | | sentence1 | label | sentence2 | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | int | string | | details | | | | * Samples: | sentence1 | label | sentence2 | |:------------------------------------------------------------|:---------------|:------------------------------------------------| | What is the price of Bitcoin? | 1 | Bitcoin's current value | | Who discovered gravity? | 1 | Who found out about gravity? | | What is the most spoken language in the world? | 1 | Language spoken by the most people | * Loss: [ContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 2 - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 5 - `lr_scheduler_type`: reduce_lr_on_plateau - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: reduce_lr_on_plateau - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap | |:----------:|:------:|:-------------:|:---------:|:---------------------:|:----------------------:| | 0 | 0 | - | - | 0.8544 | - | | 0.9524 | 10 | 0.0318 | 0.0106 | 0.9935 | - | | 1.9048 | 20 | 0.0126 | - | - | - | | 2.0 | 21 | - | 0.0043 | 1.0 | - | | 2.8571 | 30 | 0.008 | - | - | - | | **2.9524** | **31** | **-** | **0.004** | **1.0** | **-** | | 3.8095 | 40 | 0.0056 | - | - | - | | 4.0 | 42 | - | 0.0040 | 1.0 | - | | 4.7619 | 50 | 0.0039 | 0.0045 | 1.0 | 1.0 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ```