---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:333
- loss:ContrastiveLoss
widget:
- source_sentence: What is the capital of Canada?
sentences:
- Main ingredient in guacamole
- Prime Minister of the United Kingdom
- What is the capital of Australia?
- source_sentence: What is the freezing point of water?
sentences:
- Paracetamol side effects
- Temperature at which water freezes
- Who discovered electricity?
- source_sentence: Who invented the telephone?
sentences:
- Positive effects of exercise
- Current population of Japan
- Who created the telephone?
- source_sentence: Who discovered gravity?
sentences:
- Steps to cook pasta
- Who found out about gravity?
- How to reset a password
- source_sentence: What is the capital of Italy?
sentences:
- What is water's chemical formula?
- Italy's capital city
- I need help with my homework
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8237255811691284
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 1.0
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8237255811691284
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: dot_accuracy
value: 1.0
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8237255215644836
name: Dot Accuracy Threshold
- type: dot_f1
value: 1.0
name: Dot F1
- type: dot_f1_threshold
value: 0.8237255215644836
name: Dot F1 Threshold
- type: dot_precision
value: 1.0
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 1.0
name: Dot Ap
- type: manhattan_accuracy
value: 0.972972972972973
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 7.9234113693237305
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9795918367346939
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.902971267700195
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.96
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 0.9983333333333333
name: Manhattan Ap
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5937579870223999
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 1.0
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5937579870223999
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1.0
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 1.0
name: Euclidean Ap
- type: max_accuracy
value: 1.0
name: Max Accuracy
- type: max_accuracy_threshold
value: 7.9234113693237305
name: Max Accuracy Threshold
- type: max_f1
value: 1.0
name: Max F1
- type: max_f1_threshold
value: 9.902971267700195
name: Max F1 Threshold
- type: max_precision
value: 1.0
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 1.0
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8052735328674316
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 1.0
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8052735328674316
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: dot_accuracy
value: 1.0
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8052735328674316
name: Dot Accuracy Threshold
- type: dot_f1
value: 1.0
name: Dot F1
- type: dot_f1_threshold
value: 0.8052735328674316
name: Dot F1 Threshold
- type: dot_precision
value: 1.0
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 1.0
name: Dot Ap
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.779541969299316
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 1.0
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.779541969299316
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1.0
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 1.0
name: Manhattan Ap
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6235698461532593
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 1.0
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6235698461532593
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1.0
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 1.0
name: Euclidean Ap
- type: max_accuracy
value: 1.0
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.779541969299316
name: Max Accuracy Threshold
- type: max_f1
value: 1.0
name: Max F1
- type: max_f1_threshold
value: 9.779541969299316
name: Max F1 Threshold
- type: max_precision
value: 1.0
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 1.0
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-cogcache-contrastive")
# Run inference
sentences = [
'What is the capital of Italy?',
"Italy's capital city",
'I need help with my homework',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:--------|
| cosine_accuracy | 1.0 |
| cosine_accuracy_threshold | 0.8237 |
| cosine_f1 | 1.0 |
| cosine_f1_threshold | 0.8237 |
| cosine_precision | 1.0 |
| cosine_recall | 1.0 |
| cosine_ap | 1.0 |
| dot_accuracy | 1.0 |
| dot_accuracy_threshold | 0.8237 |
| dot_f1 | 1.0 |
| dot_f1_threshold | 0.8237 |
| dot_precision | 1.0 |
| dot_recall | 1.0 |
| dot_ap | 1.0 |
| manhattan_accuracy | 0.973 |
| manhattan_accuracy_threshold | 7.9234 |
| manhattan_f1 | 0.9796 |
| manhattan_f1_threshold | 9.903 |
| manhattan_precision | 0.96 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9983 |
| euclidean_accuracy | 1.0 |
| euclidean_accuracy_threshold | 0.5938 |
| euclidean_f1 | 1.0 |
| euclidean_f1_threshold | 0.5938 |
| euclidean_precision | 1.0 |
| euclidean_recall | 1.0 |
| euclidean_ap | 1.0 |
| max_accuracy | 1.0 |
| max_accuracy_threshold | 7.9234 |
| max_f1 | 1.0 |
| max_f1_threshold | 9.903 |
| max_precision | 1.0 |
| max_recall | 1.0 |
| **max_ap** | **1.0** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:--------|
| cosine_accuracy | 1.0 |
| cosine_accuracy_threshold | 0.8053 |
| cosine_f1 | 1.0 |
| cosine_f1_threshold | 0.8053 |
| cosine_precision | 1.0 |
| cosine_recall | 1.0 |
| cosine_ap | 1.0 |
| dot_accuracy | 1.0 |
| dot_accuracy_threshold | 0.8053 |
| dot_f1 | 1.0 |
| dot_f1_threshold | 0.8053 |
| dot_precision | 1.0 |
| dot_recall | 1.0 |
| dot_ap | 1.0 |
| manhattan_accuracy | 1.0 |
| manhattan_accuracy_threshold | 9.7795 |
| manhattan_f1 | 1.0 |
| manhattan_f1_threshold | 9.7795 |
| manhattan_precision | 1.0 |
| manhattan_recall | 1.0 |
| manhattan_ap | 1.0 |
| euclidean_accuracy | 1.0 |
| euclidean_accuracy_threshold | 0.6236 |
| euclidean_f1 | 1.0 |
| euclidean_f1_threshold | 0.6236 |
| euclidean_precision | 1.0 |
| euclidean_recall | 1.0 |
| euclidean_ap | 1.0 |
| max_accuracy | 1.0 |
| max_accuracy_threshold | 9.7795 |
| max_f1 | 1.0 |
| max_f1_threshold | 9.7795 |
| max_precision | 1.0 |
| max_recall | 1.0 |
| **max_ap** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 333 training samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | label | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | int | string |
| details |
How to improve my credit score?
| 1
| Improving my credit score tips
|
| How does photosynthesis work?
| 0
| What are the steps of photosynthesis?
|
| What is the population of Germany?
| 0
| How many people live in Berlin?
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 37 evaluation samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | label | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | int | string |
| details | What is the price of Bitcoin?
| 1
| Bitcoin's current value
|
| Who discovered gravity?
| 1
| Who found out about gravity?
|
| What is the most spoken language in the world?
| 1
| Language spoken by the most people
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `lr_scheduler_type`: reduce_lr_on_plateau
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters