--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Sep26-Mixat-whisper-lg-3-transliteration results: [] --- # Sep26-Mixat-whisper-lg-3-transliteration This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Wer: 35.7241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7747 | 0.4292 | 100 | 0.4311 | 36.6994 | | 0.4882 | 0.8584 | 200 | 0.4418 | 35.7241 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1